Nothing
#' Determination of the dose level for next cohort in the calibration-free odds (CFO) design for phase I/II trials
#'
#' In the CFO design for phase I/II trials, the function is used to determine the dose movement
#' based on the toxicity outcomes and efficacy outcomes of the enrolled cohorts.
#' @usage CFOeff.next(target, axs, ays, ans, currdose,
#' prior.para=list(alp.prior = target, bet.prior = 1 - target,
#' alp.prior.eff = 0.5, bet.prior.eff = 0.5),
#' cutoff.eli=0.95, early.stop=0.95, effearly.stop = 0.9, mineff)
#' @param target the target DLT rate.
#' @param axs the cumulative counts of efficacy outcomes at all dose levels.
#' @param ays the cumulative counts of DLTs observed at all dose levels.
#' @param ans the cumulative counts of patients treated at all dose levels.
#' @param currdose the current dose level.
#' @param prior.para the prior parameters for two beta distributions, where set as \code{list(alp.prior = target,
#' bet.prior = 1 - target, alp.prior.eff = 0.5, bet.prior.eff = 0.5)} by default. \code{alp.prior} and \code{bet.prior}
#' represent the parameters of the prior distribution for the true DLT rate at any dose level. This prior distribution
#' is specified as Beta(\code{alpha.prior}, \code{beta.prior}). \code{alp.eff.prior} and \code{bet.eff.prior}
#' represent the parameters of the Jeffreys' prior distribution for the efficacy probability at any dose level.
#' This prior distribution is specified as Beta(\code{alpha.eff.prior}, \code{beta.eff.prior}).
#' @param cutoff.eli the cutoff to eliminate overly toxic doses for safety. We recommend
#' the default value of \code{cutoff.eli = 0.95} for general use.
#' @param early.stop the threshold value for early stopping due to overly toxic. The default value \code{early.stop = 0.95}
#' generally works well.
#' @param effearly.stop the threshold value for early stopping due to low efficacy. The trial would be terminated
#' early if \eqn{Pr(q_k<\psi |y_k,m_k \ge 3)} is smaller than the value of \code{effearly.stop} where \eqn{q_k, y_k} and \eqn{m_k}
#' are the efficacy probability, the number of efficacy outcomes and the number of patients at dose level \eqn{k}.
#' \eqn{\psi} is the the lowest acceptable efficacy rate which is set by \code{mineff} here.
#' By default, \code{effearly.stop} is set as \code{0.9}.
#' @param mineff the lowest acceptable efficacy rate.
#'
#' @details
#' The CFO design for phase I/II trials will determine admissible set \eqn{A_n} through the dose escalation rules for the MTD. The current dose is set as
#' \eqn{d_n}. If the decision is to de-escalate the dose, the set \eqn{A_n} will be \eqn{\{1,\dots,d_n-1\}}. If the decision is to stay at the
#' current dose, then the admissible set \eqn{A_n} will be \eqn{\{1,\dots,d_n\}}. If the decision is to escalate the dose, then \eqn{A_n} will be
#' \eqn{\{1,\dots,d_n+1\}}. The dose level \eqn{d_{n+1}} for the next cohort will be selected from \eqn{A_n} by using the rule:
#' \eqn{d_{n+1} = argmax_{k\in A_n}Pr(q_k = max_{j\in A_n}\{q_j\}| D_n)} where \eqn{D_n} and \eqn{q_k} are the current data and the
#' efficacy probability for dose level \eqn{k}.
#'
#' @return The \code{CFOeff.next()} function returns a list object comprising the following elements:
#' \itemize{
#' \item target: the target DLT rate.
#' \item axs: the cumulative counts of efficacy outcomes at all dose levels.
#' \item ays: the cumulative counts of DLTs observed at all dose levels.
#' \item ans: the cumulative counts of patients treated at all dose levels.
#' \item decision: the decision in the CFO design, where \code{de-escalation}, \code{stay}, and \code{escalation} represent the
#' movement directions of the dose level, \code{stop_for_tox} indicates stopping the experiment because the lowest dose level
#' is overly toxic and \code{stop_for_low_eff} indicates that all dose level in the admissible set shows low efficacy.
#' \item currdose: the current dose level.
#' \item nextdose: the recommended dose level for the next cohort. \code{nextdose = 99} indicates that the trial is
#' terminated due to early stopping.
#' \item overtox: the situation regarding which positions experience over-toxicity. The dose level indicated
#' by \code{overtox} and all the dose levels above experience over-toxicity. \code{overtox = NA} signifies that
#' the occurrence of over-toxicity did not happen.
#' \item toxprob: the expected toxicity probability, \eqn{Pr(p_k > \phi | x_k, m_k)}, for doses in admissible set,
#' where \eqn{p_k}, \eqn{x_k}, and \eqn{m_k} are the dose-limiting toxicity (DLT) rate, the
#' numbers of observed DLTs, and the numbers of patients at dose level \eqn{k}.
#' \item effprob: the empirical probability of \eqn{Pr(q_k=max_{j\in A_n}\{q_j\}|D_n)} for doses in admissible set,
#' where \eqn{q_k} is efficacy probability at dose level \eqn{k}. \eqn{A_n} is the admissible set determined through
#' the dose escalation rules for the MTD and \eqn{D_n} is the current cumulative dataset.
#' \item admset: the admissible set \eqn{A_n}. The dose level for the next cohort will be selected from \eqn{A_n}.
#' \item class: the phase of the trial.
#' }
#'
#' @author Jialu Fang, Ninghao Zhang, Wenliang Wang, and Guosheng Yin
#'
#' @references Jin H, Yin G (2022). CFO: Calibration-free odds design for phase I/II clinical trials.
#' \emph{Statistical Methods in Medical Research}, 31(6), 1051-1066. \cr
#'
#' @export
#'
#' @examples
#' axs = c(3, 1, 7, 11, 26); ays = c(0, 0, 0, 0, 6); ans = c(6, 3, 12, 17, 36)
#' target <- 0.4
#' decision <- CFOeff.next(target,axs,ays,ans,currdose = 3, mineff = 0.3)
#' summary(decision)
#' \donttest{#early stop for overly toxic
#' axs = c(13, 11, 7, 11, 26); ays = c(25, 18, 12, 17, 26); ans = c(36, 23, 22, 27, 36)
#' target <- 0.4
#' decision <- CFOeff.next(target,axs,ays,ans,currdose = 1, mineff = 0.3)
#' summary(decision)
#' }
#' \donttest{#early stop for low efficacy
#' axs = c(0, 0, 0, 0, 0); ays = c(2, 1, 1, 1, 6); ans = c(36, 23, 22, 27, 36)
#' target <- 0.4
#' decision <- CFOeff.next(target,axs,ays,ans,currdose = 1, mineff = 0.3)
#' summary(decision)
#' }
CFOeff.next <- function(target, axs, ays, ans, currdose, prior.para=list(alp.prior = target, bet.prior = 1 - target, alp.prior.eff = 0.5,
bet.prior.eff = 0.5),
cutoff.eli=0.95, early.stop=0.95, effearly.stop=0.9, mineff){
###############################################################################
###############define the functions used for main function#####################
###############################################################################
# posterior probability of pj >= phi given data
post.prob.fn <- function(phi, y, n, alp.prior=0.1, bet.prior=0.1){
if(n != 0){
alp <- alp.prior + y
bet <- bet.prior + n - y
res <- 1 - pbeta(phi, alp, bet)
}else{
res <- NA
}
return(res)
}
under.eff.fn <- function(mineff, effearly.stop,prior.para=list())
{
args <- c(list(target = mineff), prior.para)
x <- prior.para$x
n <- prior.para$n
alp.prior <- prior.para$alp.prior.eff
bet.prior <- prior.para$bet.prior.eff
ppE <- 1 - post.prob.fn(mineff, x, n, alp.prior, bet.prior)
if ((ppE >= effearly.stop) & (n >= 3)) {
return(TRUE)
}else{
return(FALSE)
}
}
overdose.fn <- function(phi, threshold, prior.para=list()){
y <- prior.para$y
n <- prior.para$n
alp.prior <- prior.para$alp.prior
bet.prior <- prior.para$bet.prior
pp <- post.prob.fn(phi, y, n, alp.prior, bet.prior)
if ((pp >= threshold) & (prior.para$n>=3)){
return(TRUE)
}else{
return(FALSE)
}
}
prob.int <- function(phi, y1, n1, y2, n2, alp.prior, bet.prior){
alp1 <- alp.prior + y1
alp2 <- alp.prior + y2
bet1 <- bet.prior + n1 - y1
bet2 <- bet.prior + n2 - y2
fn.min <- function(x){
dbeta(x, alp1, bet1)*(1-pbeta(x, alp2, bet2))
}
fn.max <- function(x){
pbeta(x, alp1, bet1)*dbeta(x, alp2, bet2)
}
const.min <- integrate(fn.min, lower=0, upper=0.999, subdivisions=1000, rel.tol = 1e-10)$value
const.max <- integrate(fn.max, lower=0, upper=0.999, rel.tol = 1e-10)$value
p1 <- integrate(fn.min, lower=0, upper=phi)$value/const.min
p2 <- integrate(fn.max, lower=0, upper=phi)$value/const.max
list(p1=p1, p2=p2)
}
OR.values <- function(phi, y1, n1, y2, n2, alp.prior, bet.prior, type){
ps <- prob.int(phi, y1, n1, y2, n2, alp.prior, bet.prior)
if (type=="L"){
pC <- 1 - ps$p2
pL <- 1 - ps$p1
oddsC <- pC/(1-pC)
oddsL <- pL/(1-pL)
OR <- oddsC*oddsL
}else if (type=="R"){
pC <- 1 - ps$p1
pR <- 1 - ps$p2
oddsC <- pC/(1-pC)
oddsR <- pR/(1-pR)
OR <- (1/oddsC)/oddsR
}
return(OR)
}
All.OR.table <- function(phi, n1, n2, type, alp.prior, bet.prior){
ret.mat <- matrix(rep(0, (n1+1)*(n2+1)), nrow=n1+1)
for (y1cur in 0:n1){
for (y2cur in 0:n2){
ret.mat[y1cur+1, y2cur+1] <- OR.values(phi, y1cur, n1, y2cur, n2, alp.prior, bet.prior, type)
}
}
ret.mat
}
# compute the marginal prob when lower < phiL/phiC/phiR < upper
# i.e., Pr(Y=y|lower<phi<upper) upper = 1 if upper > 1
margin.phi <- function(y, n, lower, upper){
if (upper > 1){upper <- 1}
C <- 1/(upper-lower)
fn <- function(phi) {
dbinom(y, n, phi)*C
}
integrate(fn, lower=lower, upper=upper)$value
}
# Obtain the table of marginal distribution of (y1, y2)
# after intergrate out (phi1, phi2)
# under H0 and H1
# H0: phi1=phi, phi < phi2 < 2phi
# H1: phi2=phi, 0 < phi1 < phi
margin.ys.table <- function(n1, n2, phi, hyperthesis){
if (hyperthesis=="H0"){
p.y1s <- dbinom(0:n1, n1, phi)
p.y2s <- sapply(0:n2, margin.phi, n=n2, lower=phi, upper=2*phi)
}else if (hyperthesis=="H1"){
p.y1s <- sapply(0:n1, margin.phi, n=n1, lower=0, upper=phi)
p.y2s <- dbinom(0:n2, n2, phi)
}
p.y1s.mat <- matrix(rep(p.y1s, n2+1), nrow=n1+1)
p.y2s.mat <- matrix(rep(p.y2s, n1+1), nrow=n1+1, byrow=TRUE)
margin.ys <- p.y1s.mat * p.y2s.mat
margin.ys
}
# Obtain the optimal gamma for the hypothesis test
optim.gamma.fn <- function(n1, n2, phi, type, alp.prior, bet.prior){
OR.table <- All.OR.table(phi, n1, n2, type, alp.prior, bet.prior)
ys.table.H0 <- margin.ys.table(n1, n2, phi, "H0")
ys.table.H1 <- margin.ys.table(n1, n2, phi, "H1")
argidx <- order(OR.table)
sort.OR.table <- OR.table[argidx]
sort.ys.table.H0 <- ys.table.H0[argidx]
sort.ys.table.H1 <- ys.table.H1[argidx]
n.tol <- length(sort.OR.table)
if (type=="L"){
errs <- rep(0, n.tol-1)
for (i in 1:(n.tol-1)){
err1 <- sum(sort.ys.table.H0[1:i])
err2 <- sum(sort.ys.table.H1[(i+1):n.tol])
err <- err1 + err2
errs[i] <- err
}
min.err <- min(errs)
if (min.err > 1){
gam <- 0
min.err <- 1
}else {
minidx <- which.min(errs)
gam <- sort.OR.table[minidx]
}
}else if (type=='R'){
errs <- rep(0, n.tol-1)
for (i in 1:(n.tol-1)){
err1 <- sum(sort.ys.table.H1[1:i])
err2 <- sum(sort.ys.table.H0[(i+1):n.tol])
err <- err1 + err2
errs[i] <- err
}
min.err <- min(errs)
if (min.err > 1){
gam <- 0
min.err <- 1
}else {
minidx <- which.min(errs)
gam <- sort.OR.table[minidx]
}
}
list(gamma=gam, min.err=min.err)
}
moveprobs <- function(ad.xs, ad.ns, alp.prior, bet.prior){
alps <- ad.xs + alp.prior
bets <- ad.ns - ad.xs + bet.prior
nd <- length(ad.xs)
Nsps <- 10000
sps.list <- list()
for (i in 1:nd){
sps.list[[i]] <- rbeta(Nsps, alps[i], bets[i])
}
spss <- do.call(rbind, sps.list)
argMaxs <- apply(spss, 2, which.max)
probs <- as.vector(table(argMaxs))/Nsps
probs
}
###############################################################################
############################MAIN DUNCTION######################################
###############################################################################
#the results for current 3 dose levels
if (currdose != 1) {
cys <- ays[(currdose - 1):(currdose + 1)]
cns <- ans[(currdose - 1):(currdose + 1)]
}else{
cys <- c(NA, ays[1:(currdose + 1)])
cns <- c(NA, ans[1:(currdose + 1)])
}
if (is.null(prior.para$alp.prior)){
prior.para <- c(prior.para, list(alp.prior=target, bet.prior=1-target))
}
alp.prior <- prior.para$alp.prior
bet.prior <- prior.para$bet.prior
alp.prior.eff <- prior.para$alp.prior.eff
bet.prior.eff <- prior.para$bet.prior.eff
cover.doses <- c(0,0,0)
cunder.effs <- c(0,0,0)
for (i in 1:3){
cy <- cys[i]
cn <- cns[i]
if (is.na(cn)){
cover.doses[i] <- NA
}else{
prior.para <- c(list(y=cy, n=cn),list(alp.prior=alp.prior, bet.prior=bet.prior,
alp.prior.eff = alp.prior.eff, bet.prior.eff = bet.prior.eff))
if (overdose.fn(target, cutoff.eli, prior.para)){
cover.doses[i:3] <- 1
break()
}
}
}
cover.prob <- rep(0, length(ays))
for (i in 1:length(ays)){
ty <- ays[i]
tn <- ans[i]
if (is.na(tn)){
cover.prob[i] <- NA
}else{
cover.prob[i] <- post.prob.fn(target, ty, tn, alp.prior, bet.prior)
}
}
idx <- if (currdose == 2) 1 else if (currdose == 1) 2 else NA
if (!is.na(idx) & (cutoff.eli != early.stop)) {
cy <- cys[idx]
cn <- cns[idx]
if (is.na(cn)){
cover.doses[idx] <- NA
}else{
prior.para <- c(list(y=cy, n=cn),list(alp.prior=alp.prior, bet.prior=bet.prior,
alp.prior.eff = alp.prior.eff, bet.prior.eff = bet.prior.eff))
if (overdose.fn(target, early.stop, prior.para)){
cover.doses[idx:3] <- 1
}
}
}
cover.doses <- ifelse(is.na(cys), NA, cover.doses)
position <- which(cover.doses == 1)[1]
overtox <- c(-1, 0, 1)[position] + currdose
prior.para <- c(list(alp.prior=alp.prior, bet.prior=bet.prior,
alp.prior.eff = alp.prior.eff, bet.prior.eff = bet.prior.eff))
if ((cover.doses[2] == 1)&(currdose == 1)){
index <- NA
decision <- "stop_for_tox"
} else {
if (cover.doses[2] == 1){
index <- -1
decision <- "de-escalation"
}
else{
if (is.na(cys[1]) & (cover.doses[3]==1)){
index <- 0
decision <- "stay"
}
else if (is.na(cys[1]) & (!(cover.doses[3]==1))){
gam2 <- optim.gamma.fn(cns[2], cns[3], target, "R", alp.prior, bet.prior)$gamma
OR.v2 <- OR.values(target, cys[2], cns[2], cys[3], cns[3], alp.prior, bet.prior, type="R")
if (OR.v2>gam2){
index <- 1
decision <- "escalation"
}else{
index <- 0
decision <- "stay"
}
}
else if (is.na(cys[3]) | (cover.doses[3]==1)){
gam1 <- optim.gamma.fn(cns[1], cns[2], target, "L", alp.prior, bet.prior)$gamma
OR.v1 <- OR.values(target, cys[1], cns[1], cys[2], cns[2], alp.prior, bet.prior, type="L")
if (OR.v1>gam1){
index <- -1
decision <- "de-escalation"
}else{
index <- 0
decision <- "stay"
}
}
else if (!(is.na(cys[1]) | is.na(cys[3]) | cover.doses[3]==1)){
gam1 <- optim.gamma.fn(cns[1], cns[2], target, "L", alp.prior, bet.prior)$gamma
gam2 <- optim.gamma.fn(cns[2], cns[3], target, "R", alp.prior, bet.prior)$gamma
OR.v1 <- OR.values(target, cys[1], cns[1], cys[2], cns[2], alp.prior, bet.prior, type="L")
OR.v2 <- OR.values(target, cys[2], cns[2], cys[3], cns[3], alp.prior, bet.prior, type="R")
v1 <- OR.v1 > gam1
v2 <- OR.v2 > gam2
if (v1 & !v2){
index <- -1
decision <- "de-escalation"
}else if (!v1 & v2){
index <- 1
decision <- "escalation"
}else{
index <- 0
decision <- "stay"
}
}
}
}
if (decision == 'stop_for_tox'){
set <- NULL
probs <- NULL
nextdose <- 99
}else{
up.idx <- currdose + index
if (up.idx == 1) {
nextdose <- 1
probs <- 1
set <- 1
cover.prob <- post.prob.fn(target, ays[1], ans[1], alp.prior, bet.prior)
}else{
low.idx <- 1
ad.xs <- axs[low.idx:up.idx]
ad.ys <- ays[low.idx:up.idx]
ad.ns <- ans[low.idx:up.idx]
set <- c(low.idx:up.idx)
for (dose in set){
ax <- ad.xs[dose]
an <- ad.ns[dose]
if (is.na(cn)){
cover.doses[dose] <- NA
}else{
prior.para <- c(list(x=ax, n=an),list(alp.prior=alp.prior, bet.prior=bet.prior,
alp.prior.eff = alp.prior.eff, bet.prior.eff = bet.prior.eff))
if (under.eff.fn(mineff, effearly.stop, prior.para)){
cunder.effs[dose] <- 1
}
}
}
probs <- moveprobs(ad.xs, ad.ns, prior.para$alp.prior.eff, prior.para$bet.prior.eff)
if (sum(cunder.effs) == length(set)){
nextdose <- 99
decision = 'stop_for_low_eff'
}
else {
if (length(ad.xs) == 1) {
nextdose <- low.idx
}else{
nextdose <- which.max(probs)
}
}
cover.prob = cover.prob[low.idx:up.idx]
}
}
if(decision == "stop_for_tox"){#This only happen when current dose level is 1
cover.prob = cover.prob[1]
}
out <- list(target = target, axs = axs, ays = ays, ans = ans, decision = decision, currdose = currdose,
nextdose = nextdose, overtox = overtox, toxprob = cover.prob, effprob = probs,
admset = set, class = "phaseI/II")
class(out) <- c("cfo_eff_decision", "cfo")
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.