inst/tinytest/test-mosaic.R

# This is a long test ... only run it "at home" 20220129
if(!at_home()) exit_file("Skipping long test")

# Load default settings for CHNOSZ
reset()

info <- "results are consistent with affinity()"
basis(c("CO2", "H2O", "NH3", "O2"), c(0, 0, 0, 0))
species(c("alanine", "glycine"))
a25 <- affinity()
# This is a no-op case because we only allow NH3 to swap for NH3, and CO2 for CO2;
# however it still exercises the affinity scaling and summing code
m1_25 <- mosaic(list("NH3", "CO2"))
# This failed before we divided by loga.tot to get _relative_ abundances of basis species in mosaic.R
expect_equal(a25$values, m1_25$A.species$values, info = info)
# The next call failed when which.pmax(), called by diagram(), choked on a list of length one
m2_25 <- mosaic(list("NH3", "CO2"), blend = FALSE)
expect_equal(a25$values, m2_25$A.species$values, info = info)
# Make sure the function works when all affinities are NA
a500 <- suppressWarnings(affinity(T = 500))
# Using blend = TRUE was failing prior to version 1.1.3-37
m1_500 <- suppressWarnings(mosaic(list("NH3", "CO2"), T = 500))
expect_equal(a500$values, m1_500$A.species$values, info = info)
m2_500 <- suppressWarnings(mosaic(list("NH3", "CO2"), blend = FALSE, T = 500))
expect_equal(a500$values, m2_500$A.species$values, info = info)

info <- "blend = TRUE produces reasonable values"
# A more rigorous test than above. this was failing because loga.tot (actually, a.tot)
# was computed incorrectly, by sum()ing an unlist()ed list (the affinities of basis species)
# to produce a single value; corrected by using Reduce for addition of vectors/arrays in the list.
# Example adapted from ?mosaic
basis(c("FeO", "SO4-2", "H2O", "H+", "e-"))
basis("SO4-2", -6)
basis("Eh", -0.15)
species(c("hematite", "magnetite"))
# The basis species we'll swap through
bases <- c("SO4-2", "HSO4-", "HS-", "H2S")         
# Calculate affinities using the predominant basis species
pH <- c(0, 14, 29)
m1 <- mosaic(bases, pH = pH, blend = FALSE)
# Calculate affinities with smooth transitions between basis species
m2 <- mosaic(bases, pH = pH)
# These species have no S so the results should be similar,
expect_equivalent(m2$A.species$values[[1]], m1$A.species$values[[1]], info = info)
# Now with S-bearing species ...
species(c("pyrrhotite", "pyrite"))
m3 <- mosaic(bases, pH = pH, blend = FALSE)
m4 <- mosaic(bases, pH = pH)
# The results are different ...
expect_equal(sapply(m3$A.species$values, "[", 13), sapply(m4$A.species$values, "[", 13), tol = 1e-1, info = info)
# But more similar at extreme pH values
expect_equal(sapply(m3$A.species$values, "[", 1), sapply(m4$A.species$values, "[", 1), tol = 1e-7, info = info)
expect_equal(sapply(m3$A.species$values, "[", 29), sapply(m4$A.species$values, "[", 29), tol = 1e-13, info = info)

info <- "mosaic() - equilibrate() produces equilibrium activities"
# Test added 20190505, based on a calculation sent by Kirt Robinson
basis(c("CO2", "NH3", "O2", "H2O", "H+"))
species(c("acetamide", "acetic acid", "acetate"))
m <- mosaic(c("NH3", "NH4+"), pH = c(0, 14))
e <- equilibrate(m$A.species)
# Calculate logK for form acetamide from predominant species at low pH
s1 <- subcrt(c("acetic acid", "NH4+", "acetamide", "water", "H+"), c(-1, -1, 1, 1, 1), T = 25)
logK1 <- s1$out$logK
# Values of activities
loga_acetic <- e$loga.equil[[2]]
loga_NH4 <- m$E.bases[[1]]$loga.equil[[2]]
loga_acetamide <- e$loga.equil[[1]]
loga_H2O <- m$E.bases[[1]]$basis$logact[[4]]
loga_Hplus <- - m$E.bases[[1]]$vals$pH
logQ1 <- - loga_acetic - loga_NH4 + loga_acetamide + loga_H2O + loga_Hplus
A1 <- logQ1 - logK1
## In CHNOSZ versions before 1.3.2-5 (20190505), the affinity was zero at the pH extremes,
## but peaked with a value of 0.3 (log10(2)) at pH 9.2 (equal activities of NH3 and NH4+)
#plot(m$E.bases[[1]]$vals$pH, A1, type = "l")
#title(main = describe.reaction(s1$reaction))
expect_equivalent(as.numeric(A1), rep(0, length(A1)), info = info)

info <- "mosaic() - solubility() produces equilibrium activities"
# Test added 20190505, simplified from demo/contour.R with varying pH at constant logfO2
# Define temperature and pressure
T <- 250
P <- 500
# Set up system
basis(c("Au", "Cl-", "H2S", "H2O", "oxygen", "H+"))
species(c("Au(HS)2-", "AuHS", "AuOH", "AuCl2-"))
# This get us close to total S = 0.01 m
basis("H2S", -2)
# Set a low logfO2 to get into H2S - HS- fields
basis("O2", -40)
# Calculate solution composition for 1 mol/kg NaCl
NaCl <- NaCl(T = T, P = P, m_tot = 1)
basis("Cl-", log10(NaCl$m_Cl))
# Calculate affinity with changing basis species
bases <- c("H2S", "HS-", "HSO4-", "SO4-2")
m <- mosaic(bases, pH = c(2, 10), T = 250, P = 500, IS = NaCl$IS)
# Calculate solubility
s <- solubility(m$A.species)
# Calculate logK to form Au(HS)2- in H2S stability region
# Include IS here to compute adjusted logK
s1 <- subcrt(c("Au", "H2S", "oxygen", "Au(HS)2-", "H2O", "H+"), c(-1, -2, -0.25, 1, 0.5, 1), T = T, P = P, IS = NaCl$IS)
logK1 <- s1$out$logK
# Calculate logQ with the given or computed activities
loga_Au <- m$A.bases$basis$logact[[1]]
loga_H2S <- m$E.bases[[1]]$loga.equil[[1]]
logf_O2 <- m$A.bases$basis$logact[[5]]
loga_AuHS2minus <- s$loga.equil[[1]]
loga_H2O <- m$A.bases$basis$logact[[4]]
loga_Hplus <- - m$A.bases$vals$pH
logQ1 <- - 1 * loga_Au - 2 * loga_H2S - 0.25 * logf_O2 + 1 * loga_AuHS2minus + 0.5 * loga_H2O + 1 * loga_Hplus
# Calculate affinity - should be zero!
A1 <- logQ1 - logK1
#plot(m$A.bases$vals$pH, A1, type = "l")
#title(main = describe.reaction(s1$reaction))
expect_equivalent(as.numeric(A1), rep(0, length(A1)), info = info)

info <- "mosaic() - equilibrate() produces equilibrium activities that are consistent with
stability differences of minerals and multiple groups of changing basis species"
# Test added 20190505, adapted from demo/mosaic.R:
#   select a constant pH close to equal activities of CO2 - HCO3-,
#   and a range of Eh that crosses the upper and lower boundaries
#   of pyrite with siderite (including the H2S - SO4-2 transition)
basis(c("FeO", "SO4-2", "H2O", "H+", "e-", "CO3-2"))
basis("SO4-2", -6)
basis("CO3-2", 0)
basis("pH", 6.3)
species(c("pyrrhotite", "pyrite", "hematite", "magnetite", "siderite"))
# Two sets of changing basis species:
# speciate SO4-2, HSO4-, HS-, H2S as a function of Eh and pH
# speciate CO3-2, HCO3-, CO2 as a function of pH
bases <- list(c("SO4-2", "HSO4-", "HS-", "H2S"),
              c("CO3-2", "HCO3-", "CO2"))
# Calculate affinities using the relative abundances of different basis species
m <- mosaic(bases, Eh = c(-0.5, 0))
# Calculate logK for pyrite-siderite reaction using arbitrarily chosen basis species
s1 <- subcrt(c("pyrite", "CO2", "H2O", "H+", "e-", "siderite", "H2S"), c(-1, -1, -1, -2, -2, 1, 2), T = 25)
logK <- s1$out$logK
# Get activities of minerals, water, and H+
loga_pyrite <- loga_siderite <- loga_H2O <- 0
loga_Hplus <- m$A.bases[[1]]$basis$logact[[4]]
# Get activities of basis species
loga_eminus <- - convert(m$A.bases[[1]]$vals$Eh, "pe")
loga_H2S <- m$E.bases[[1]]$loga.equil[[4]]
loga_CO2 <- m$E.bases[[2]]$loga.equil[[3]]
# Calculate affinity
logQ <- -1 * loga_pyrite - 1 * loga_CO2 - 1 * loga_H2O - 2 * loga_Hplus - 2 * loga_eminus + 1 * loga_siderite + 2 * loga_H2S
A <- logQ - logK
# The "hand-calculated" value and the affinity calculated by the function should be equal
Adiff <- A - (m$A.species$values[[2]] - m$A.species$values[[5]])
#par(mfrow = c(2, 1))
#diagram(m$A.species)
#plot(m$A.bases[[1]]$vals$Eh, Adiff, type = "l")
#title(main = "A(single basis species) - A(all basis species)")
#legend("topleft", legend = describe.reaction(s1$reaction))
expect_equivalent(as.numeric(Adiff), rep(0, length(Adiff)), info = info)

Try the CHNOSZ package in your browser

Any scripts or data that you put into this service are public.

CHNOSZ documentation built on May 29, 2024, 3:30 a.m.