| hdbscan.seurat | R Documentation | 
This function applies HDBSCAN, a density-based clustering algorithm, to the corrected dimension reduction of a Seurat object.
hdbscan.seurat(
  seu,
  batch.var = "Batch",
  reduction = "pca",
  dims = seq_len(15),
  minPts = 25
)
| seu | A Seurat object containing integrated or batch-corrected data (e.g. PCA results). | 
| batch.var | Character string specifying the metadata column that contains batch information. Default is "Batch". | 
| reduction | Character string specifying the name of the dimension reduction to use (e.g. "PCA"). Default is "PCA". | 
| dims | Numeric vector indicating the dimensions to be used for initial clustering. Default is 1:15. | 
| minPts | Integer specifying the minimum number of points required to form a cluster. 
This value is passed to the  | 
A Seurat object with two additional columns in its meta.data: 
dbscan_cluster and initial_cluster.
getIDEr, estimateProb
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.