hdbscan.seurat | R Documentation |
This function applies HDBSCAN, a density-based clustering algorithm, to the corrected dimension reduction of a Seurat object.
hdbscan.seurat(
seu,
batch.var = "Batch",
reduction = "pca",
dims = seq_len(15),
minPts = 25
)
seu |
A Seurat object containing integrated or batch-corrected data (e.g. PCA results). |
batch.var |
Character string specifying the metadata column that contains batch information. Default is "Batch". |
reduction |
Character string specifying the name of the dimension reduction to use (e.g. "PCA"). Default is "PCA". |
dims |
Numeric vector indicating the dimensions to be used for initial clustering. Default is 1:15. |
minPts |
Integer specifying the minimum number of points required to form a cluster.
This value is passed to the |
A Seurat object with two additional columns in its meta.data
:
dbscan_cluster
and initial_cluster
.
getIDEr
, estimateProb
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.