Nothing
skip_on_cran()
# nocov ---------------------------------------------------------------------------------
clv.cdnow <- fct.helper.create.clvdata.cdnow()
test_that("Works out of the box with all models (family unevaluated)", {
skip_on_cran()
expect_silent(latentAttrition(formula = , family=pnbd, data=clv.cdnow, verbose=FALSE))
expect_silent(latentAttrition(formula = , family=bgnbd, data=clv.cdnow, verbose=FALSE))
expect_silent(latentAttrition(formula = , family=ggomnbd, data=clv.cdnow, verbose=FALSE))
})
# test_that("Works out of the box with all models (family evaluated)", {
# skip_on_cran()
# expect_silent(latentAttrition(formula = , family=pnbd(), data=clv.cdnow, verbose=FALSE))
# expect_silent(latentAttrition(formula = , family=bgnbd(), data=clv.cdnow, verbose=FALSE))
# expect_silent(latentAttrition(formula = , family=ggomnbd(), data=clv.cdnow, verbose=FALSE))
# })
test_that("Works with optimx args", {
skip_on_cran()
expect_silent(p.cdnow <- latentAttrition(formula = , family=pnbd, data=clv.cdnow, verbose=FALSE, optimx.args=list(method="Nelder-Mead")))
expect_setequal("Nelder-Mead", rownames(p.cdnow@optimx.estimation.output))
})
test_that("Works with verbose", {
skip_on_cran()
# verbose=FALSE is tested in every other place
expect_message(latentAttrition(formula = , family=pnbd, data=clv.cdnow, verbose=TRUE))
})
test_that("Works with extra args (start.params)", {
skip_on_cran()
expect_silent(latentAttrition(formula =, family=bgnbd, start.params.model = c(r=1, alpha=0.2, a=2.3, b=3.45), data=clv.cdnow, verbose=FALSE))
})
test_that("Works with correlation", {
skip_on_cran()
expect_warning(latentAttrition(formula = , family = pnbd, data=clv.cdnow, verbose=FALSE,
use.cor = TRUE, start.param.cor=0.01,
optimx.args=list(itnmax=20,hessian=FALSE,control=list(kkt=F))),
"Hessian")
})
# static cov ------------------------------------------------------------------------------------
clv.apparel.cov <- fct.helper.create.clvdata.apparel.staticcov(estimation.split = NULL)
test_that("Every model works without specials", {
skip_on_cran()
expect_silent(latentAttrition(formula =~ .|., family=pnbd, data = clv.apparel.cov, verbose=FALSE))
expect_silent(latentAttrition(formula =~ .|., family=bgnbd, data = clv.apparel.cov, verbose=FALSE))
expect_silent(latentAttrition(formula =~ .|., family=ggomnbd, data = clv.apparel.cov, verbose=FALSE))
})
test_that("Works with regularization", {
skip_on_cran()
expect_silent(latentAttrition(formula =~ .|., family=pnbd, data = clv.apparel.cov, verbose=FALSE, reg.lambdas = c(life=8, trans=10)))
})
test_that("Works with selecting single covs", {
skip_on_cran()
expect_silent(latentAttrition(formula = ~Gender|Gender+Channel, family=pnbd, data=clv.apparel.cov, verbose=FALSE))
expect_silent(latentAttrition(formula = ~Gender|Channel, family=pnbd, data=clv.apparel.cov, verbose=FALSE))
})
test_that("Works with transformations in RHS2/3 and named in constraint()", {
skip_on_cran()
# with and without space in transformation (x+y vs x + y)
expect_silent(latentAttrition(formula = ~ log(Gender+2)|log(Gender+2), family=pnbd, data = clv.apparel.cov, verbose=FALSE, names.cov.constr="log.Gender...2."))
expect_silent(latentAttrition(formula = ~ log(Gender+2)|log(Gender + 2), family=pnbd, data=clv.apparel.cov, verbose=FALSE, names.cov.constr="log.Gender...2."))
})
test_that("Works with . and excluding covs", {
skip_on_cran()
expect_silent(latentAttrition(formula = ~.|., family=pnbd, data=clv.apparel.cov, verbose=FALSE))
expect_silent(latentAttrition(formula = ~Gender-Channel|Channel-Gender, family=pnbd, data=clv.apparel.cov, verbose=FALSE))
expect_silent(latentAttrition(formula = ~.-Channel|.-Gender, family=pnbd, data=clv.apparel.cov, verbose=FALSE))
})
# dyn cov ------------------------------------------------------------------------------------
clv.apparel.dyn.cov <- fct.helper.create.clvdata.apparel.dyncov()
test_that("Works with . and excluding covs", {
skip_on_cran()
expect_warning(latentAttrition(formula=~.-Gender|., family=pnbd, data=clv.apparel.dyn.cov, verbose=FALSE, optimx.args = fct.helper.dyncov.get.optimxargs.quickfit(hessian=FALSE)), "Hessian")
expect_warning(latentAttrition(formula=~Channel|.-Gender, family=pnbd, data=clv.apparel.dyn.cov, verbose=FALSE, optimx.args = fct.helper.dyncov.get.optimxargs.quickfit(hessian=FALSE)), "Hessian")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.