Nothing
#' Function value and gradient calculation for ACMTF
#'
#' @param x Vectorized parameters of the CMTF model.
#' @param Z Z object as generated by [setupCMTFdata()].
#' @param alpha Alpha value of the loss function as specified by Acar et al., 2014
#' @param beta Beta value of the loss function as specified by Acar et al., 2014
#' @param epsilon Epsilon value of the loss function as specified by Acar et al., 2014
#'
#' @return A list containing the function ("fn") and the gradient ("gr").
#' @export
#'
#' @examples
#' A = array(rnorm(108*2), c(108, 2))
#' B = array(rnorm(100*2), c(100, 2))
#' C = array(rnorm(10*2), c(10, 2))
#' D = array(rnorm(100*2), c(100,2))
#' E = array(rnorm(10*2), c(10,2))
#'
#' df1 = reinflateTensor(A, B, C)
#' df2 = reinflateTensor(A, D, E)
#' datasets = list(df1, df2)
#' modes = list(c(1,2,3), c(1,4,5))
#' Z = setupCMTFdata(datasets, modes, normalize=FALSE)
#'
#' init = initializeACMTF(Z, 2, output="vect")
#' outcome = acmtf_fg(init, Z)
#' f = outcome$fn
#' g = outcome$gr
acmtf_fg = function(x, Z, alpha=1, beta=rep(1e-3, length(Z$object)), epsilon=1e-8){
numDatasets = length(Z$object)
numModes = max(unlist(Z$modes))
Fac = vect_to_fac(x, Z)
numComponents = ncol(Fac[[1]])
# Precalculate the reinflated blocks
reinflatedBlocks = reinflateFac(Fac, Z, returnAsTensor=TRUE)
# Precalculate the residuals of the blocks
residuals = list()
for(p in 1:numDatasets){
reinflatedBlock = reinflatedBlocks[[p]]
residualBlock = Z$object[[p]] - reinflatedBlock
residuals[[p]] = Z$missing[[p]] * residualBlock
}
## LOSS PART ##
# Penalty for fit on X
f_per_term = rep(NA, numDatasets)
for(p in 1:numDatasets){
Fnorm = rTensor::fnorm(residuals[[p]]) # verified to work for matrices too
f_per_term[p] = 0.5 * Fnorm^2
}
# Penalty to make the solution norm 1
f_norm = matrix(NA, nrow=numModes, ncol=numComponents)
for(i in 1:numModes){
for(j in 1:numComponents){
f_norm[i,j] = 0.5 * alpha * (norm(as.matrix(Fac[[i]][,j]), "2")-1)^2
}
}
# Penalty on the lambdas
f_lambda = matrix(NA, nrow=numComponents, ncol=numDatasets)
for(i in 1:numComponents){
for(p in 1:numDatasets){
lambda_r = Fac[[numModes+1]][p,i]
f_lambda[i,p] = 0.5 * beta[p] * (sqrt(lambda_r^2 + epsilon))
}
}
f = sum(f_per_term) + sum(f_norm) + sum(f_lambda)
## GRADIENT PART ##
gradient = list()
# Gradients per mode stored in a list, will be vectorized at the end.
for(i in 1:numModes){
gradient[[i]] = array(0L, dim(Fac[[i]]))
# Gradient as generated per dataset
# Note: this is different from CMTF because it multiplies the residuals by the lambdas
for(p in 1:numDatasets){
modes = Z$modes[[p]]
if(i %in% modes){
idx = which(modes==i)
otherModes = modes[-idx]
unfoldedX = rTensor::k_unfold(Z$missing[[p]], idx) * rTensor::k_unfold(Z$object[[p]], idx)
unfoldedXhat = rTensor::k_unfold(Z$missing[[p]], idx) * rTensor::k_unfold(reinflatedBlocks[[p]], idx)
lambdas = Fac[[numModes+1]][p,]
if(length(modes) == 3){
gradientMode = (unfoldedXhat - unfoldedX)@data %*% multiway::krprod(t(lambdas), multiway::krprod(Fac[[otherModes[2]]], Fac[[otherModes[1]]]))
} else if(length(modes) == 2){
gradientMode = (unfoldedXhat - unfoldedX)@data %*% Fac[[otherModes[1]]] %*% diag(x=lambdas, nrow=length(lambdas), ncol=length(lambdas))
}
else{
stop(paste0("Number of modes is incorrect for block ", p))
}
gradient[[i]] = gradient[[i]] + gradientMode
}
}
# Gradient of norm 1 restriction
gradient[[i]] = gradient[[i]] + alpha * (Fac[[i]] - removeTwoNormCol(Fac[[i]]))
}
# Gradient of the lambdas
gradient[[numModes+1]] = array(0L, dim(Fac[[numModes+1]]))
for(i in 1:numDatasets){
modes = Z$modes[[i]]
for(j in 1:numComponents){
lambda_r = Fac[[numModes+1]][i,j]
residuals = reinflatedBlocks[[i]] - Z$object[[i]]
residuals = Z$missing[[i]] * residuals
for(k in 1:length(modes)){
residuals = rTensor::ttm(residuals, t(as.matrix(Fac[[modes[k]]][,j])), k)
}
gradient[[numModes+1]][i,j] = residuals@data[1] + ((beta[i]/2) * (lambda_r / (sqrt(lambda_r^2+epsilon))))
}
}
g = fac_to_vect(gradient)
return(list("fn"=f, "gr"=g))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.