Nothing
#' @title
#' Estimate the Individual Treatment Effect (ITE) using S-Learner
#'
#' @description
#' Estimates the Individual Treatment Effect using S-Learner given a response
#' vector, a treatment vector, a features matrix and estimation model for the
#' outcome.
#'
#' @param y An observed response vector.
#' @param z A treatment vector.
#' @param X A features matrix.
#' @param learner_y An estimation model for the outcome.
#'
#' @return
#' A list of ITE estimates.
#'
#' @keywords internal
#'
estimate_ite_slearner <- function(y, z, X, learner_y = "SL.xgboost") {
logger::log_trace("learner_y: '{learner_y}' was selected.")
y_model <- SuperLearner::SuperLearner(Y = y,
X = data.frame(X = X, Z = z),
family = gaussian(),
SL.library = learner_y,
cvControl = list(V = 0))
if (sum(y_model$coef) == 0) y_model$coef[1] <- 1
y_0_hat <- predict(y_model,
data.frame(X = X, Z = rep(0, nrow(X))),
onlySL = TRUE)$pred
y_1_hat <- predict(y_model,
data.frame(X = X, Z = rep(1, nrow(X))),
onlySL = TRUE)$pred
ite <- as.vector(y_1_hat - y_0_hat)
return(ite)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.