Nothing
test_that("cre Runs Correctly", {
# Generate sample data
skip_on_cran()
set.seed(2021)
dataset_cont <- generate_cre_dataset(n = 400, rho = 0, n_rules = 2, p = 10,
effect_size = 2, binary_outcome = FALSE)
y <- dataset_cont[["y"]]
z <- dataset_cont[["z"]]
X <- as.data.frame(dataset_cont[["X"]])
ite <- dataset_cont[["ite"]]
X_names <- names(as.data.frame(X))
method_params <- list(ratio_dis = 0.25,
ite_method = "bart",
learner_ps = "SL.xgboost",
learner_y = "SL.xgboost")
hyper_params <- list(intervention_vars = NULL,
offset = NULL,
ntrees = 50,
node_size = 10,
max_rules = 50,
max_depth = 3,
t_decay = 0.025,
t_ext = 0.025,
t_corr = 1,
stability_selection = "vanilla",
cutoff = 0.6,
pfer = 1,
B = 10,
subsample = 0.5)
method_params[["ratio_dis"]] <- 2
expect_error(cre(y, z, X, method_params, hyper_params))
method_params[["ratio_dis"]] <- 0.25
method_params[["ite_method"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
method_params[["ite_method"]] <- "aipw"
method_params[["learner_ps"]] <- 1
expect_error(cre(y, z, X, method_params, hyper_params))
method_params[["learner_ps"]] <- "SL.xgboost"
method_params[["learner_y"]] <- 1
expect_error(cre(y, z, X, method_params, hyper_params))
method_params[["learner_y"]] <- "SL.xgboost"
method_params[["ite_method"]] <- "tpoisson"
hyper_params[["offset"]] <- "test"
expect_error(cre(y_temp, z, X, method_params, hyper_params))
hyper_params[["offset"]] <- NULL
hyper_params[["ntrees"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
method_params[["ite_method"]] <- "aipw"
hyper_params[["ntrees"]] <- 0
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["ntrees"]] <- 40
hyper_params[["node_size"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["node_size"]] <- 5
hyper_params[["max_rules"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["max_rules"]] <- 5
hyper_params[["t_ext"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["t_ext"]] <- 0.025
hyper_params[["t_decay"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["t_decay"]] <- 0.025
hyper_params[["t_corr"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["t_corr"]] <- 0.1
hyper_params[["cutoff"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["cutoff"]] <- 0.8
hyper_params[["stability_selection"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["stability_selection"]] <- "vanilla"
hyper_params[["pfer"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["pfer"]] <- 1
hyper_params[["B"]] <- "test"
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["B"]] <- 10
hyper_params[["subsample"]] <- 2
expect_error(cre(y, z, X, method_params, hyper_params))
hyper_params[["subsample"]] <- 0.5
hyper_params[["intervention_vars"]] <- c("test")
expect_error(cre(y, z, X, method_params, hyper_params))
# Correct outputs
hyper_params[["intervention_vars"]] <- c("x1", "x2", "x5")
cre_results <- cre(y, z, X, method_params, hyper_params)
expect_true(class(cre_results) == "cre")
hyper_params[["stability_selection"]] <- "error_control"
cre_results <- cre(y, z, X, method_params, hyper_params)
expect_true(class(cre_results) == "cre")
method_params[["ite_method_dis"]] <- "aipw"
method_params[["ite_method_inf"]] <- "aipw"
cre_results <- cre(y, z, X, method_params, hyper_params)
expect_true(class(cre_results) == "cre")
cre_results <- cre(y, z, X, method_params, hyper_params, ite)
expect_true(class(cre_results) == "cre")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.