Nothing
get.plot.var.order <- function(var.order, var.freq, compare.method.fit,
cv.fit, var.freq.thr) {
if (is.null(compare.method.fit) & is.null(cv.fit)) {
return(var.order[1:sum(var.freq >= var.freq.thr)])
} else{
cv.sel.i <- NULL
compare.sel.i <- NULL
if (!is.null(compare.method.fit)) compare.sel.i <- which(colSums(compare.method.fit[, -1, drop = FALSE] != 0) != 0)
if (!is.null(cv.fit)) cv.sel.i <- which(var.freq < var.freq.thr & cv.fit[-1] != 0)
low.tau.but.compare.i <- intersect(which(var.freq < var.freq.thr), union(compare.sel.i, cv.sel.i))
if (length(low.tau.but.compare.i)) {
cv.dummy = compare.dummy = rep(0, length(low.tau.but.compare.i))
if (!is.null(cv.fit)) cv.dummy <- cv.fit[-1][low.tau.but.compare.i]
if (!is.null(compare.method.fit)) {
compare.dummy <- colMeans(compare.method.fit[, -1, drop = FALSE][, low.tau.but.compare.i, drop = FALSE] != 0)
}
var.order <- c(var.order[1:sum(var.freq >= var.freq.thr)],
low.tau.but.compare.i[order(-var.freq[low.tau.but.compare.i],
-abs(compare.dummy), -abs(cv.dummy))])
}
}
return(var.order)
}
get.df.for.gg.plot <- function(mod, csuv.mod, compare.mod, cv.mod, tau,
var.order, print.compare.method.points) {
# the mod, compare.mod, cv.mod all should have NO intercept
long.df <- reshape2::melt(data = mod,
variables.name = "variables",
value.name = "coefficients"
)
long.df <- long.df[, -1] # remove the first col
colnames(long.df)[1] <- "variables"
long.df[, "type"] <- "fit"
# ===== add other values ==========
var.names <- colnames(mod)
long.df <- rbind(long.df, data.frame(variables = var.names,
coefficients = csuv.mod,
type = "csuv_m"))
long.df <- rbind(long.df, data.frame(variables = var.names,
coefficients = round(tau * 100),
type = "tau"))
if (!is.null(compare.mod)) {
long.df <- rbind(long.df, data.frame(variables = var.names,
coefficients = round(colMeans(compare.mod != 0) * 100), type = "compare"))
if (print.compare.method.points) {
long.compare.df <- reshape2::melt(data = compare.mod,
variables.name = "variables",
value.name = "coefficients")
colnames(long.compare.df)[1:2] <- c("type", "variables")
long.df <- rbind(long.df, long.compare.df[, c("variables", "coefficients", "type")])
}
}
if (!is.null(cv.mod)) long.df <- rbind(long.df, data.frame(variables = var.names,
coefficients = cv.mod,
type = "cv"))
ordered.selected.variables <- var.names[var.order]
long.df <- long.df[which(long.df[, "variables"] %in% ordered.selected.variables), ]
long.df$variables <- factor(long.df$variables,
levels = ordered.selected.variables, ordered = TRUE)
return(long.df)
}
get.shade.col.n.lab <- function(tau) {
# tau is \in [0,1]
tau.i <- as.numeric(sort(unique(pmin((tau * 100) %/% 10, 9)),
decreasing = TRUE))
tau.factors <- as.factor(c((9:0) * 10))
col.rgb <- sapply(tau.i, function(i) grDevices::rgb(1 - i / 10, 1 - i / 10, 1 - i / 10))
col.labels <- sapply(tau.i, function(i)
ifelse(i == 9, paste0("[", i * 10, ",", (i + 1) * 10, "]"),
paste0("[", i * 10, ",", (i + 1) * 10, ")")))
return(list(tau.factors = tau.factors,
col.rgb = col.rgb,
col.labels = col.labels))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.