Description Usage Arguments Value References See Also Examples
The aim is to reduce the error produced by the initial estimation of the Gaussian process by fortifying the initial DOE. The method consists in proposing new points based on the expectancy improvement criterion. The method and the algorithm are detailed in [Damblin et al. 2018]
1 | sequentialDesign(md, pr, opt.estim, k)
|
md |
the model to improve (model2 or model4) |
pr |
list of priors to use for calibration |
opt.estim |
estimation options
|
k |
number of iteration in the algorithm |
a seqDesign.class
DAMBLIN, Guillaume, BARBILLON, Pierre, KELLER, Merlin, et al. Adaptive numerical designs for the calibration of computer codes. SIAM/ASA Journal on Uncertainty Quantification, 2018, vol. 6, no 1, p. 151-179.
model
, prior
, calibrate
, sequentialDesign
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ## Not run:
###### The code to calibrate
X <- cbind(seq(0,1,length.out=5),seq(0,1,length.out=5))
code <- function(X,theta)
{
return((6*X[,1]*theta[2]-2)^2*theta[1]*sin(theta[3]*X[,2]-4))
}
Yexp <- code(X,c(1,1,11))+rnorm(5,0,0.1)
###### For the second model
### code function is available, no DOE generated upstream
binf <- c(0.9,0.9,10.5)
bsup <- c(1.1,1.1,11.5)
opt.gp <- list(type="matern5_2", DOE=NULL)
opt.emul <- list(p=3,n.emul=150,binf=binf,bsup=bsup,type="maximinLHS")
model2 <- model(code,X,Yexp,"model2",
opt.gp=opt.gp,
opt.emul=opt.emul)
model2 %<% list(theta=c(1,1,11),var=0.1)
pr <- prior(type.prior=c("gaussian","gaussian","gaussian","gamma"),opt.prior=
list(c(1,0.01),c(1,0.01),c(11,3),c(2,0.1)))
###### Definition of the calibration options
opt.estim=list(Ngibbs=200,Nmh=400,thetaInit=c(1,1,11,0.1),r=c(0.3,0.3),
sig=diag(4),Nchains=1,burnIn=100)
###### Run the sequential calibration
mdfit <- sequentialDesign(model2,pr,opt.estim,2)
#plot(mdfit,X[,1])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.