Nothing
outcome_model_args <- list(
family = gaussian(),
SL.library = c("SL.glmnet", "SL.glm"),
cvControl = list(V = 5L))
treatment_model_args <- list(
family = binomial(),
SL.library = c("SL.glmnet", "SL.glm"),
cvControl = list(V = 5L))
external_model_args = list(
family = binomial(),
SL.library = c("SL.glmnet", "SL.glm"),
cvControl = list(V = 5L))
replications <- 2
set.seed(1234)
for (cross_fitting in c(FALSE)){
for (treatment_model_type in c('separate', 'joint')){
for (source_model in c('MN.nnet', 'MN.glmnet')){
test_that(
paste('ATE_internal with: cross_fitting = ', cross_fitting, ', treatment_model_type = ', treatment_model_type, ', source_model = ', source_model), {
expect_no_error({
res <- ATE_internal(
X = dat_multisource[, 1:5],
Y = dat_multisource$Y,
S = dat_multisource$S,
A = dat_multisource$A,
cross_fitting = cross_fitting,
source_model = source_model,
treatment_model_type = treatment_model_type,
treatment_model_args = treatment_model_args,
outcome_model_args = outcome_model_args,
replications = replications)
capture.output(print(res))
capture.output(summary(res))
})
})
test_that(
paste('STE_internal with: cross_fitting = ', cross_fitting, ', treatment_model_type = ', treatment_model_type, ', source_model = ', source_model), {
expect_no_error({
res <- STE_internal(
X = dat_multisource[, 1:5],
Y = dat_multisource$Y,
EM = dat_multisource$EM,
S = dat_multisource$S,
A = dat_multisource$A,
cross_fitting = cross_fitting,
source_model = source_model,
treatment_model_type = treatment_model_type,
treatment_model_args = treatment_model_args,
outcome_model_args = outcome_model_args,
replications = replications)
capture.output(print(res))
capture.output(summary(res))
})
})
test_that(
paste('ATE_external with: cross_fitting = ', cross_fitting, ', treatment_model_type = ', treatment_model_type, ', source_model = ', source_model), {
expect_no_error({
res <- ATE_external(
X = dat_multisource[, 2:5],
X_external = dat_external[, 2:5],
Y = dat_multisource$Y,
S = dat_multisource$S,
A = dat_multisource$A,
cross_fitting = cross_fitting,
source_model = source_model,
treatment_model_type = treatment_model_type,
treatment_model_args = treatment_model_args,
outcome_model_args = outcome_model_args,
external_model_args = external_model_args,
replications = replications)
capture.output(print(res))
capture.output(summary(res))
})
})
test_that(
paste('STE_external with: cross_fitting = ', cross_fitting, ', treatment_model_type = ', treatment_model_type, ', source_model = ', source_model), {
expect_no_error({
res <- STE_external(
X = dat_multisource[, 2:5],
X_external = dat_external[, 2:5],
Y = dat_multisource$Y,
EM = dat_multisource$EM,
EM_external = dat_external$EM,
S = dat_multisource$S,
A = dat_multisource$A,
cross_fitting = cross_fitting,
source_model = source_model,
treatment_model_type = treatment_model_type,
treatment_model_args = treatment_model_args,
outcome_model_args = outcome_model_args,
external_model_args = external_model_args,
replications = replications)
capture.output(print(res))
capture.output(summary(res))
})
})
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.