Nothing
.load_engineParams <- function(model, params, ellipsisArgs) {
engineParamsNames <-
intersect(names(as.list(args(engineParams))), names(ellipsisArgs))
if (missing(params)) {
if (length(engineParamsNames) == 0) {
params <- Certara.RsNLME::engineParams(model)
} else {
engineParamsArgs <- ellipsisArgs[engineParamsNames]
engineParamsArgs$model <- model
params <-
do.call(eval(parse(text = "Certara.RsNLME::engineParams")), engineParamsArgs)
}
} else {
if (!inherits(params, "NlmeEngineExtraParams")) {
"The argument given is not NlmeEngineExtraParams class. Please check the syntax."
}
if (length(engineParamsNames) > 0) {
engineParamsArgs <- ellipsisArgs[engineParamsNames]
engineParamsArgs$model <- model
params <-
do.call(eval(parse(text = "Certara.RsNLME::engineParams")), engineParamsArgs)
warning(
"Engine arguments are supplied through both params argument and additional argument.",
"\nThe ones defined through params argument will be ignored.",
call. = FALSE,
immediate. = TRUE
)
}
}
params
}
#' NlmeEngineExtraParams : Defines all extra engine parameters
#'
#' @slot isPopulation is this a population model
#' @slot method what engine to use
#' QRPEM = 1|IT2S-EM = 2|FOCE-LB = 3|FO = 4|
#' LAPLACIAN = 5|NAIVE-POOLED = 6
#' The only difference between FOCE-ELS and Laplacian is the setup for the other parameter "PARAMS_FOCEHESE".
#' If FOCE-ELS is chosen, PARAMS_FOCEHESE = 1. If Laplacian is chosen, PARAMS_FOCEHESE = 0. PARAMS_FOCEHESE arg
#' should not be provided, and is controlled by the method.
#' @slot numIterations maximum number of iterations
#' @slot odeToUse What ODE to use
#' common : ODE_STIFF=2|ODE_NON_STIFF=3|ODE_AUTO_DETECT=5|MATRIX_EXP=6
#' others : ODE_LSODE=1|ODE_LSODE_ANA_JAC=2|ODE_RK=3|ODE_LSODA=4|
#' ODE_LSODA_ANA_JAC=5|MATRIX_EXP=6
#' @slot anagrad n 0, or 1 to allow analytic gradients (default 0)
#' @slot xnp n number of nonparametric generations (or 0)
#' @slot xrestart n 0, or 1 to restart
#' @slot xnorderagq n number of AGQ points per axis (or 0)
#' @slot xfocehess n 0 for numerical hessian, 1 for foce
#' @slot xstderr n 0=none, 1=central, 2=forward
#' @slot xlameth n LAGL Method 1, 2, or 3
#' @slot xlandig n LAGL nDigit
#' @slot xlatol n LAGL tolerance
#' @slot xblndig n BLUP Method 1, 2, or 3
#' @slot xblndig n BLUP nDigit
#' @slot xbltol n BLUP tolerance
#' @slot xpcwresnrep n number of reps for PCWRES simulation
#' @slot xisample n number of samples for QRPEM
#' @slot xmapassist n 0 (default) or >0, to enable map assist and specify periodicity
#' @slot xmapnp n map naive-pool control
#' @slot ximpsampdof n importance sampling control (-3 to 30)
#' NORMAL=0
#' DBL_EXP=1
#' DIRECT=2
#' MIXTURE_2=-2
#' MIXTURE_3=-3
#' @slot xmcpem n 0 for QRPEM, 1 for MCPEM
#' @slot xsirsamp n number of SIR samples
#' @slot xburnin n number of burn-in samples
#' @slot xnonomegaburn n 0 (default) or 1, to use non-omega burn-in
#' @slot xnoburn n 0 (default) or 1, to suppress burn-in
#' @slot xstartfromsavedposteriors n 0 (default) or 1, to start from saved posteriors
#' @slot xaccratio n acceptance ratio
#' @slot xscramble n 0 for None, 1 for Owen, 2 for Faure-Tezuka
#' @slot pardern n partial derivative # steps
#' @slot parderd n partial derivative delta
#' @slot logtran n 0, or 1(default) to enable log-translate of data
#'
#' @export NlmeEngineExtraParams
#'
#' @examples
#' param <- NlmeEngineExtraParams(
#' method = 3,
#' numIterations = 1000
#' )
#' param <- NlmeEngineExtraParams(
#' method = 1,
#' numIterations = 300
#' )
#' param <- NlmeEngineExtraParams(
#' method = 1,
#' numIterations = 300,
#' isPopulation = TRUE,
#' odeToUse = 2
#' )
#' @keywords internal
NlmeEngineExtraParams <- setClass(
"NlmeEngineExtraParams",
slots = c(
isPopulation = "logical",
isPCWRES = "numeric",
isQRPEMStyleMethod = "numeric",
method = "numeric",
numIterations = "numeric",
odeToUse = "numeric",
scenarios = "character",
xnp = "numeric",
anagrad = "numeric",
logtran = "numeric",
xrestart = "numeric",
xnorderagq = "numeric",
xfocehess = "numeric",
xmapnp = "numeric",
xpcwresnrep = "numeric",
xstderr = "numeric",
xlameth = "numeric",
xlandig = "numeric",
xlatol = "numeric",
xblmeth = "numeric",
xblndig = "numeric",
xbltol = "numeric",
parderd = "numeric",
pardern = "numeric",
rtol = "numeric",
atol = "numeric",
xisample = "numeric",
xmapassist = "numeric",
ximpsampdof = "numeric",
xmcpem = "numeric",
xpemrunall = "numeric",
xsirsamp = "numeric",
xburnin = "numeric",
xnonomegaburn = "numeric",
xnoburn = "numeric",
nmxstep = "numeric",
sort = "character",
csv = "character",
sand = "character",
fisher = "character",
autodetect = "character",
xstartfromsavedposteriors = "numeric",
xaccratio = "numeric",
xscramble = "numeric"
),
prototype = list(autodetect = "")
) -> NlmeEngineExtraParams
setMethod("initialize", "NlmeEngineExtraParams",
function(.Object,
isPopulation = TRUE,
isPCWRES = 0,
method = 5,
numIterations = 1000,
odeToUse = 6,
scenarios = "",
xnp = 0,
anagrad = 0,
logtran = 1,
xrestart = 0,
xnorderagq = 1,
xfocehess = 1,
xmapnp = 0,
xpcwresnrep = 1,
xstderr = 1,
xlameth = 1,
xlandig = 7,
xlatol = 0.01,
xblmeth = 1,
xblndig = 13,
xbltol = 0.002,
parderd = 1E-05,
pardern = 20,
rtol = 1E-06,
atol = 1E-06,
xisample = 300,
xmapassist = 0,
ximpsampdof = 0,
xmcpem = 0,
xpemrunall = 0,
xsirsamp = 10,
xburnin = 0,
xnonomegaburn = 0,
xnoburn = 0,
nmxstep = 5000,
sort = " -sort ",
csv = " -csv ",
sand = "",
fisher = "",
autodetect = "",
xstartfromsavedposteriors = 0,
xaccratio = 0.1,
xscramble = 1) {
if (method == 1 || method == 2) {
isQRPEMStyleMethod <- 1
} else {
isQRPEMStyleMethod <- 0
}
if (sort != "") {
sort <- " -sort "
}
if (csv != "") {
csv <- " -csv "
}
if (sand != "") {
sand <- " -sand "
}
if (fisher != "") {
fisher <- " -fscore "
}
if (autodetect != "") {
autodetect <- " -AutoSE "
}
.Object@method <- method
.Object@isPopulation <- isPopulation
.Object@isQRPEMStyleMethod <- isQRPEMStyleMethod
.Object@isPCWRES <- isPCWRES
.Object@numIterations <- numIterations
.Object@odeToUse <- odeToUse
.Object@scenarios <- scenarios
.Object@xnp <- xnp
.Object@anagrad <- anagrad
.Object@logtran <- logtran
.Object@xrestart <- xrestart
.Object@xnorderagq <- xnorderagq
.Object@xfocehess <- xfocehess
.Object@xmapnp <- xmapnp
.Object@xpcwresnrep <- xpcwresnrep
.Object@xstderr <- xstderr
.Object@xlameth <- xlameth
.Object@xlandig <- xlandig
.Object@xlatol <- xlatol
.Object@xblmeth <- xblmeth
.Object@xblndig <- xblndig
.Object@xbltol <- xbltol
.Object@parderd <- parderd
.Object@pardern <- pardern
.Object@rtol <- rtol
.Object@atol <- atol
.Object@xisample <- xisample
.Object@xmapassist <- xmapassist
.Object@ximpsampdof <- ximpsampdof
.Object@xmcpem <- xmcpem
.Object@xpemrunall <- xpemrunall
.Object@xsirsamp <- xsirsamp
.Object@xburnin <- xburnin
.Object@xnonomegaburn <- xnonomegaburn
.Object@xnoburn <- xnoburn
.Object@xstartfromsavedposteriors <- xstartfromsavedposteriors
.Object@xaccratio <- xaccratio
.Object@xscramble <- xscramble
.Object@nmxstep <- nmxstep
.Object@sort <- sort
.Object@csv <- csv
.Object@sand <- sand
.Object@fisher <- fisher
.Object@autodetect <- autodetect
.Object
})
#' Print generic for class NlmeEngineExtraParams
#'
#' Print generic for class NlmeEngineExtraParams
#'
#' @param x NlmeEngineExtraParams class instance
#' @inheritParams ellipsis::dots_used
#'
#' @examples
#' print(NlmeEngineExtraParams())
#' @export
#' @keywords internal
#' @return \code{NULL}
print.NlmeEngineExtraParams <- function(x, ...) {
cat("\n Engine Parameters \n ------------------------------------------- \n")
cat(paste("Is population : ", x@isPopulation), fill = TRUE)
sort <- !(is.null(x@sort) || x@sort == "")
cat(paste("Sort input data : ", sort), fill = TRUE)
if (x@method == 1) {
method <- "QRPEM"
} else if (x@method == 2) {
method <- "IT2S-EM"
} else if (x@method == 3) {
method <- "FOCE-LB"
} else if (x@method == 4) {
method <- "FO"
} else if (x@method == 6) {
method <- "NAIVE-POOLED"
} else if (x@method == 5 && x@xfocehess == 0) {
method <- "LAPLACIAN"
} else if (x@method == 5 && x@xfocehess == 1) {
method <- "FOCE-ELS"
}
solver <-
switch(
x@odeToUse,
"ODE_LSODA_ANA_JAC",
"Stiff",
"Non-stiff DVERK",
"ODE_LSODA",
"Auto-detect",
"Matrix Exponent",
"Non-stiff DOPRI5",
"MatExp Higham"
)
cat(paste("Engine used : ", method), fill = TRUE)
cat(paste("Maximum number of iterations: ", x@numIterations),
fill = TRUE)
cat(paste("ODE solver : ", solver), fill = TRUE)
cat("\n Advanced Options \n ------------------------------------------- \n")
if (method %in% c("FOCE-ELS", "LAPLACIAN")) {
cat(paste("Number of integration points: ", x@xnorderagq), fill = TRUE)
}
if (method != "NAIVE-POOLED") {
cat(paste("Number of non-param iter : ", x@xnp), fill = TRUE)
cat(paste("Number of MAPNP iter : ", x@xmapnp), fill = TRUE)
if (x@isPCWRES) {
cat(paste("Number of replicates PCWRES : ", x@xpcwresnrep),
fill = TRUE)
}
cat(paste("Use synthetic gradients : ", as.logical(x@anagrad)), fill = TRUE)
cat(paste("LAGL nDigit : ", x@xlandig), fill = TRUE)
cat(paste("BLUP nDigit : ", x@xblndig), fill = TRUE)
cat(paste("Linearization step size : ", x@xbltol), fill = TRUE)
}
if (!x@isPopulation) {
cat(paste("Step size for partial deriv : ", x@parderd), fill = TRUE)
cat(paste("Number of steps output deriv: ", x@pardern), fill = TRUE)
}
cat(paste("ODE relative tolerance : ", x@rtol), fill = TRUE)
cat(paste("ODE absolute tolerance : ", x@atol), fill = TRUE)
cat(paste("ODE max steps : ", x@nmxstep), fill = TRUE)
if (method == "QRPEM") {
if (x@ximpsampdof == -3) {
impDist <- "Mixture-3"
} else if (x@ximpsampdof == -2) {
impDist <- "Mixture-2"
} else if (x@ximpsampdof == 0) {
impDist <- "Multivariate Normal"
} else if (x@ximpsampdof == 1) {
impDist <- "Multivariate Laplace"
} else if (x@ximpsampdof == 2) {
impDist <- "Direct Sampling"
} else {
impDist <- "Multivariate T"
}
if (x@xscramble == 0) {
scramble <- "None"
} else if (x@xscramble == 1) {
scramble <- "Owen"
} else if (x@xscramble == 2) {
scramble <- "Tezuka-Faur"
}
cat("\n QRPEM Options \n ------------------------------------------- \n")
cat(paste("MAP assistance enabled : ", x@xmapassist > 0), fill = TRUE)
if (x@xmapassist > 0) {
cat(paste("Period to MAP assistance : ", x@xmapassist), fill = TRUE)
}
cat(paste("Number of sample points : ", x@xisample), fill = TRUE)
cat(paste("Acceptance ratio : ", x@xaccratio), fill = TRUE)
cat(paste("Importance sampling distr : ", impDist), fill = TRUE)
if (impDist == "Multivariate T") {
cat(paste("Degrees of freedom : ", x@ximpsampdof), fill = TRUE)
}
cat(paste("QR Scrambling method : ", scramble), fill = TRUE)
cat(paste("Number of SIR samples : ", x@xsirsamp), fill = TRUE)
cat(paste("Number of burn-in iter : ", x@xburnin), fill = TRUE)
cat(paste(
"Freeze omega during burn-in : ",
as.logical(x@xnonomegaburn)
), fill = TRUE)
cat(paste("Monte-Carlo sampling : ", as.logical(x@xmcpem)), fill = TRUE)
cat(paste("Run all iterations : ", as.logical(x@xpemrunall)), fill = TRUE)
}
cat("\n Standard Errors \n ------------------------------------------- \n")
if (x@sand == " -sand ") {
stdErr <- "Sandwich"
} else if (x@fisher == " -fscore ") {
stdErr <- "Fisher Score"
} else if (x@autodetect == " -AutoSE ") {
stdErr <- "Auto-Detect"
} else if (x@xstderr == 0) {
stdErr <- "None"
} else {
stdErr <- "Hessian"
}
cat(paste("Standard Errors Method : ", stdErr), fill = TRUE)
if (stdErr != "None") {
if (x@xstderr == 2) {
cat(paste("Finite Difference Method : ", "Forward Difference"),
fill = TRUE)
} else {
cat(paste("Finite Difference Method : ", "Central Difference"),
fill = TRUE)
}
if (x@isPopulation) {
cat(paste("Step size : ", x@xlatol), fill = TRUE)
}
}
cat("\n ------------------------------------------- ")
}
setMethod("show", "NlmeEngineExtraParams",
definition = function(object){
print(object)
})
#' Specify engine parameters for model execution
#'
#' Use to define extra engine parameters for model execution.
#'
#' @param model Model object
#' @param sort Logical; Specifying whether or not to sort the input data by subject and time values.
#' \itemize{
#' \item If \code{model@@hasResetInfo = TRUE}, then \code{sort} must be set to \code{FALSE} (default);
#' \item Otherwise, the default value for \code{sort} is \code{TRUE}.
#' }
#' @param ODE Character; Specifying the solver used to numerically solve
#' Ordinary Differential Equations (ODEs). Options are `"MatrixExponent"`,
#' `"Higham"`, `"DVERK"`, `"DOPRI5"`, `"AutoDetect"`, `"Stiff"`. See Details
#' section.
#' @param rtolODE Numeric; Specifying relative tolerance for the numerical ODE solver.
#' @param atolODE Numeric; Specifying absolute tolerance for the numerical ODE solver.
#' @param maxStepsODE Numeric; Specifying maximum number of allowable steps or function evaluations for the ODE solver.
#' @param numIterations Numeric; Specifying maximum number of iterations for estimation.
#' @param method Character; Specifying engine method for estimation. For population models,
#' options are \code{"QRPEM"}, \code{"IT2S-EM"}, \code{"FOCE-LB"}, \code{"FO"},
#' \code{"FOCE-ELS"}, \code{"Laplacian"}, \code{"Naive-Pooled"}.
#' While, for individual models, \code{"Naive-Pooled"} is the only option.\cr
#'
#' Note: For population models, if \code{model} involves any discontinuous observed variable (e.g., count data) or BQL data,
#' the default method is \code{"Laplacian"}; otherwise, the default method is \code{"FOCE-ELS"}.
#' @param stdErr Character; Specifying method for standard error computations. \cr
#' \itemize{
#' \item For individual models, options are \code{"Hessian"} (default) and \code{"None"};
#' \item For population models with \code{method = "QRPEM"}, options are \code{"Fisher-Score"} (default) and \code{"None"};
#' \item For population models with \code{method = "IT2s-EM"}, the only option is \code{"None"};
#' \item For population models with \code{method} set to either \code{"FOCE-LB"}, \code{"FO"},
#' \code{"FOCE-ELS"}, \code{"Laplacian"}, or \code{"Naive-Pooled"}, options are \code{"Sandwich"} (default),
#' \code{"Hessian"}, \code{"Fisher-Score"}, \code{"Auto-Detect"}, and \code{"None"}.
#' }
#' Here \code{"None"} means that standard error calculations are not performed.
#' @param isCentralDiffStdErr Logical; Default \code{TRUE} uses central difference for \code{stdErr} calculations.
#' Set to \code{FALSE} for forward difference method.
#' @param stepSizeStdErr Numeric; Specifying the step size used for \code{stdErr} calculations.
#' If not specified, 0.01 is used for population models and 0.001 for individual models.
#' @param numIntegratePtsAGQ Numeric; Specifying the number of integration points
#' for adaptive Gaussian quadrature (AGQ) algorithm. Only applicable to population models with
#' \code{method} set to either \code{"FOCE-ELS"} or \code{"Laplacian"}.
#' @param numIterNonParametric Numeric; Specifying the number of iterations to perform non-parametric estimation.
#' Only applicable to population models when \code{method} is not set to \code{Naive-Pooled}.
#' @param allowSyntheticGradient Logical, Set to \code{TRUE} to use synthetic gradient during the estimation process.
#' Only applicable to population models when \code{method} is not set to \code{Naive-Pooled}.
#' @param numIterMAPNP Numeric; Specifying the number of iterations
#' to perform Maximum A Posterior (MAP) initial Naive Pooling (NP) run before estimation.
#' Only applicable to population models when \code{method} is not set to \code{Naive-Pooled}.
#' @param numRepPCWRES Numeric; Specifying the number of replicates to generate the PCWRES
#' after the simple estimation. Only applicable to population models when \code{method} is not set to \code{Naive-Pooled}.
#' @param stepSizeLinearize Numeric; Specifying the step size used for numerical differentiation
#' when linearizing the model function during the estimation process.
#' @param numDigitLaplacian Numeric; Specifying the number of significant decimal digits for the Laplacian algorithm
#' to use to reach convergence. Only applicable to population models.
#' @param numDigitBlup Numeric; Specifying the number of significant decimal digits for the individual estimation
#' to use to reach convergence. Only applicable to population models.
#' @param mapAssist Numeric; Specifying the period used to perform MAP assistance (\code{mapAssist = 0} means that
#' MAP assistance is not performed). Only applicable to population models with \code{method = "QRPEM"}.
#' @param iSample Numeric; Specifying the number of samples. Only applicable to population models with \code{method = "QRPEM"}.
#' @param iAcceptRatio Numeric; Specifying the acceptance ratio. Only applicable to population models with \code{method = "QRPEM"}.
#' @param impDist Character; Specifying the distribution used for important sampling, and options are
#' \code{"Normal"} (default), \code{"DoubleExponential"}, \code{"Direct"}, \code{"T"}, \code{"Mixture-2"}, \code{Mixture-3}.
#' Only applicable to population models with \code{method = "QRPEM"}.
#' @param tDOF Numeric; Specifing the degree of freedom (allowed value is between 3 and 30) for T distribution.
#' Only applicable to population models with \code{method = "QRPEM"} and \code{impDist = "T"}.
#' @param numSampleSIR Numeric; Specifying the number of samples per subject used
#' in the Sampling Importance Re-Sampling (SIR) algorithm to determine the number of SIR samples
#' taken from the empirical discrete distribution that approximates the target conditional distribution.
#' Only applicable to population models with \code{method = "QRPEM"}.
#' @param numBurnIn Numeric; Specifying the number of burn-in iterations to perform at startup
#' to adjust certain internal parameters. Only applicable to population models with \code{method = "QRPEM"}.
#' @param freezeOmega Logical; Set to \code{TRUE} to freeze Omega but not Theta for the number of iterations
#' specified in the \code{numBurnIn}. Only applicable to population models with \code{method = "QRPEM"}.
#' @param MCPEM Logical; Set to \code{TRUE} to use Monte-Carlo sampling instead of Quasi-Random.
#' Only applicable to population models with \code{method = "QRPEM"}.
#' @param runAllIterations Logical; Set to \code{TRUE} to execute all requested iterations specified in \code{numIterations}.
#' Only applicable to population models with \code{method = "QRPEM"}.
#' @param scramble Character; Specifying the quasi-random scrambling method to use,
#' and options are \code{"Owen"}, \code{"Tezuka-Faur"}, or \code{"None"}.
#' Only applicable to population models with \code{method = "QRPEM"}.
#' @param stepSizePartialDeriv Numeric; Specifying the step size used to numerically calculate the partial derivatives
#' of observed variables with respect to parameters. Only applicable to individual models.
#' @param numTimeStepPartialDeriv Numeric; Specifying the number of time steps used to output the partial derivatives
#' of observed variables with respect to parameters. Only applicable to individual models.
#'
#' @details
#' Both `"DVERK"` and `"DOPRI5"` are non-stiff solvers. `"Higham"` is a matrix
#' exponent based ODE solver which could be useful when overscaling issue should
#' be avoided, i.e. the ratio between observed values and doses is too high or
#' too low. `"AutoDetect"` represents LSODA solver implemenation, which solves
#' the initial value problem for stiff or nonstiff systems of first order
#' ordinary differential equations. `"Stiff"` is a LSODE (Livermore solver). It
#' is best suited for stiff problems.
#'
#' @return List of engine parameters to be used during fitting or simulation
#' @export
engineParams <- function(model,
sort = NULL,
ODE = "MatrixExponent",
rtolODE = 1e-6,
atolODE = 1e-6,
maxStepsODE = 50000,
numIterations = 1000,
method = NULL,
stdErr = NULL,
isCentralDiffStdErr = TRUE,
stepSizeStdErr = NULL,
numIntegratePtsAGQ = 1,
numIterNonParametric = 0,
allowSyntheticGradient = FALSE,
numIterMAPNP = 0,
numRepPCWRES = 0,
stepSizeLinearize = 0.002,
numDigitLaplacian = 7,
numDigitBlup = 13,
mapAssist = 0,
iSample = 300,
iAcceptRatio = 0.1,
impDist = "Normal",
tDOF = 4,
numSampleSIR = 10,
numBurnIn = 0,
freezeOmega = FALSE,
MCPEM = FALSE,
runAllIterations = FALSE,
scramble = "Owen",
stepSizePartialDeriv = 1e-5,
numTimeStepPartialDeriv = 20)
{
ep <- NlmeEngineExtraParams()
if (model@isPopulation) {
ep@isPopulation <- TRUE
} else {
ep@isPopulation <- FALSE
}
if (numIterations < 0 || numIterations %% 1 != 0) {
stop("value supplied to argument `numIterations` must be non-negative integer")
} else {
ep@numIterations <- numIterations
}
`%notin%` <- Negate(`%in%`)
is.natural <- function(x) {
x > 0 && identical(round(x), x)
}
#Check if PML contains discont statements and assign flag
modelDiagnostic <- createModelInfo(model = model)
if (any(modelDiagnostic == "(allowgaussianfit 1)")) {
hasDiscont <- FALSE
} else {
hasDiscont <- TRUE
}
# Check method ---------------------------------------------------------
#If missing method assign default based on individual/population model
if (is.null(method)) {
if (model@isPopulation == FALSE) {
method <- "Naive-Pooled"
} else {
if (hasDiscont) {
method <- "Laplacian"
} else {
method <- "FOCE-ELS"
}
}
} else {
#If method specified, provide condition checks
if (model@isPopulation == FALSE && method != "Naive-Pooled") {
stop("model@isPopulation = FALSE; must specify method = 'Naive-Pooled'")
}
if (model@isPopulation == TRUE &&
hasDiscont &&
method %notin% c("Laplacian", "QRPEM", "IT2S-EM", "Naive-Pooled")) {
stop(
"model has discontinuous observed variables and/or BQL data;",
" available options for `method` are 'Laplacian', 'QRPEM', 'IT2S-EM', or 'Naive-Pooled'"
)
}
}
# Check stdErr------------------------------------------------------
if (is.null(stdErr)) {
#Assign standard error defaults if is.null
if (model@isPopulation == FALSE) {
stdErr <- "Hessian"
} else {
if (method == "QRPEM") {
stdErr <- "Fisher-Score"
} else if (method %in% c("FOCE-ELS", "Laplacian", "FOCE-LB", "FO", "Naive-Pooled")) {
stdErr <- "Sandwich"
} else {
stdErr <- "None"
}
}
} else {
#Check for incompatible stdErr if specified
if (model@isPopulation == FALSE) {
if (stdErr %notin% c("Hessian", "None")) {
stop(
"model@isPopulation = FALSE; available options for argument `stdErr` are 'Hessian' and 'None'"
)
}
} else {
if (method == "QRPEM" && stdErr %notin% c("Fisher-Score", "None")) {
stop(
"model@isPopulation = TRUE and method = 'QRPEM'; available options for argument `stdErr` are 'Fisher-Score' or 'None'"
)
}
if (method == "IT2S-EM" && stdErr != "None") {
stop(
"model@isPopulation = TRUE and method = 'IT2S-EM'; must set argument `stdErr` = 'None'"
)
}
}
}
#Assign xfocehess according to method, note cannot use m here as both require /m 5 for both Laplacian and FOCE-ELS
if (!is.null(method)) {
if (method == "Laplacian") {
ep@xfocehess = 0
} else {
ep@xfocehess = 1
}
}
m <-
.assignEngineMethod(method, model) #See helper function below engineParams()
ep@method <- m
if (m == 1 || m == 2) {
ep@isQRPEMStyleMethod <- 1
} else {
ep@isQRPEMStyleMethod <- 0
}
if (model@isPopulation) {
if (method %in% c("FOCE-ELS", "Laplacian")) {
ep@xnorderagq <- numIntegratePtsAGQ
} else {
ep@xnorderagq <- 0
}
}
if (model@isPopulation) {
if (numIterNonParametric < 0 || numIterNonParametric %% 1 != 0) {
stop(
"value supplied to argument `numIterNonParametric` must be a non-negative integer"
)
} else {
ep@xnp <- numIterNonParametric
}
}
if (model@isPopulation) {
if (numIterMAPNP < 0 || numIterMAPNP %% 1 != 0) {
stop("value supplied to argument `numIterMAPNP` must be a non-negative integer")
} else {
ep@xmapnp <- numIterMAPNP
}
}
if (model@isPopulation) {
if (numRepPCWRES < 0 ||
numRepPCWRES > 1001 || numRepPCWRES %% 1 != 0) {
stop(
"value supplied to argument ` numRepPCWRES` must be a non-negative integer between 0 and 1001"
)
} else {
if (numRepPCWRES > 0) {
ep@isPCWRES <- 1
ep@xpcwresnrep <- numRepPCWRES
} else {
ep@isPCWRES <- 0
}
}
}
if (model@isPopulation) {
if (stepSizeLinearize < 0) {
stop("value supplied to argument `stepSizeLinearize` must be positive")
} else {
ep@xbltol <- stepSizeLinearize
}
}
if (model@isPopulation) {
if (!is.natural(numDigitLaplacian)) {
stop("value supplied to argument `stepSizeLinearize` must be natural number")
} else {
ep@xlandig <- numDigitLaplacian
}
}
if (model@isPopulation) {
if (!is.natural(numDigitBlup)) {
stop("value supplied to argument `stepSizeLinearize` must be natural number")
} else {
ep@xblndig <- numDigitBlup
}
}
if (model@isPopulation && method == "QRPEM") {
if (mapAssist < 0 || mapAssist %% 1 != 0) {
stop("value supplied to argument `mapAssist` must be positive")
} else {
ep@xmapassist <- mapAssist
}
}
if (model@isPopulation && method == "QRPEM") {
if (!is.natural(iSample)) {
stop("value supplied to argument `iSample` must be a natural number")
} else {
ep@xisample <- iSample
}
}
if (model@isPopulation && method == "QRPEM") {
if (iAcceptRatio <= 0) {
stop("value supplied to argument `iAcceptRatio` must be positive")
} else {
ep@xaccratio <- iAcceptRatio
}
}
if (method == "Naive-Pooled") {
if (numIterNonParametric != 0) {
stop("argument `numIterNonParametric` not applicable for `method` = 'Naive-Pooled'")
}
if (allowSyntheticGradient) {
stop(
"argument `allowSyntheticGradient` not applicable for `method` = 'Naive-Pooled'"
)
}
if (numIterMAPNP != 0) {
stop("argument `numIterMAPNP` not applicable for `method` = 'Naive-Pooled'")
}
if (numRepPCWRES != 0) {
stop("argument `numRepPCWRES` not applicable for `method` = 'Naive-Pooled'")
}
}
if (model@isPopulation && method == "QRPEM") {
if (tDOF < 3 || tDOF > 30) {
stop("value supplied to argument `tDOF` must be between 3 and 30")
}
if (!is.natural(tDOF)) {
stop("value supplied to argument `tDOF` must be a natural number")
}
if (impDist == "Normal") {
ep@ximpsampdof <- 0
} else if (impDist == "DoubleExponential") {
ep@ximpsampdof <- 1
} else if (impDist == "Direct") {
ep@ximpsampdof <- 2
} else if (impDist == "T") {
ep@ximpsampdof <- tDOF
} else if (impDist == "Mixture-2") {
ep@ximpsampdof <- -2
} else if (impDist == "Mixture-3") {
ep@ximpsampdof <- -3
} else {
stop(
"available options for argument `impDist` are 'Normal', 'DoubleExponential', 'Direct', 'T', 'Mixture-2', or 'Mixture-3'"
)
}
}
if (model@isPopulation && method == "QRPEM") {
if (!is.natural(numSampleSIR)) {
stop("value supplied to argument `numSampleSIR` must be a natural number")
} else {
ep@xsirsamp <- numSampleSIR
}
}
if (model@isPopulation && method == "QRPEM") {
if (numBurnIn < 0) {
stop("value supplied to argument `numBurnIn` must be positive")
} else {
ep@xburnin <- numBurnIn
}
}
if (model@isPopulation && method == "QRPEM") {
if (freezeOmega) {
ep@xnonomegaburn <- 1
} else {
ep@xnonomegaburn <- 0
}
}
if (model@isPopulation && method == "QRPEM") {
if (MCPEM) {
ep@xmcpem <- 1
} else {
ep@xmcpem <- 0
}
}
if (model@isPopulation && method == "QRPEM") {
if (runAllIterations) {
ep@xpemrunall <- 1
} else {
ep@xpemrunall <- 0
}
}
if (model@isPopulation && method == "QRPEM") {
if (scramble == "None") {
ep@xscramble <- 0
} else if (scramble == "Owen") {
ep@xscramble <- 1
} else if (scramble == "Tezuka-Faur") {
ep@xscramble <- 2
} else {
stop("argument `scramble` must be one of 'Owen', 'Tezuka-Faur', or 'None'")
}
}
if (method != "QRPEM" || model@isPopulation == FALSE) {
if (mapAssist != 0) {
stop(
"argument `mapAssist` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (iSample != 300) {
stop(
"argument `iSample` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (iAcceptRatio != 0.1) {
stop(
"argument `iSample` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (impDist != "Normal") {
stop(
"argument `impDist` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (tDOF != 4) {
stop(
"argument `tDOF` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (numSampleSIR != 10) {
stop(
"argument `numSampleSIR` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (numBurnIn != 0) {
stop(
"argument `numBurnIn` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (freezeOmega == TRUE) {
stop(
"argument `freezeOmega` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (MCPEM == TRUE) {
stop(
"argument `MCPEM` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (runAllIterations == TRUE) {
stop(
"argument `runAllIterations` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
if (scramble != "Owen") {
stop(
"argument `scramble` only applicable for model@isPopulation = TRUE and method = 'QRPEM'"
)
}
}
if (method %notin% c("FOCE-ELS", "Laplacian") &
numIntegratePtsAGQ != 1) {
stop(
"argument `numIntegratePtsAGQ` only applicable for `method` 'FOCE-ELS' and 'Laplacian'"
)
}
if (model@isPopulation == FALSE) {
if (numIntegratePtsAGQ != 1) {
stop("argument `numIntegratePtsAGQ` only applicable for model@isPopulation = TRUE")
}
if (numIterNonParametric != 0) {
stop("argument `numIterNonParametric` only applicable for model@isPopulation = TRUE")
}
if (numIterMAPNP != 0) {
stop("argument `numIterMAPNP` only applicable for model@isPopulation = TRUE")
}
if (numRepPCWRES != 0) {
stop("argument `numRepPCWRES` only applicable for model@isPopulation = TRUE")
}
if (allowSyntheticGradient == TRUE) {
stop(
"argument `allowSyntheticGradient` only applicable for model@isPopulation = TRUE"
)
}
if (stepSizeLinearize != 0.002) {
stop("argument `stepSizeLinearize` only applicable for model@isPopulation = TRUE")
}
if (numDigitLaplacian != 7) {
stop("argument `numDigitLaplacian` only applicable for model@isPopulation = TRUE")
}
if (numDigitBlup != 13) {
stop("argument `numDigitBlup` only applicable for model@isPopulation = TRUE")
}
}
o <-
.assignODEMethod(ODE) #See helper function below engineParams()
ep@odeToUse <- o
ep@rtol <- rtolODE
ep@atol <- atolODE
ep@nmxstep <- maxStepsODE
if (!is.null(stepSizeStdErr)) {
if (!is.numeric(stepSizeStdErr) || stepSizeStdErr <= 0) {
stop("value supplied for argument `stepSizeStdErr` must be positive number")
}
ep@xlatol <- stepSizeStdErr
} else {
if (model@isPopulation) {
ep@xlatol <- 0.01
} else {
ep@xlatol <- 0.001
}
}
if (isCentralDiffStdErr == FALSE) {
ep@xstderr <- 2
}
if (is.null(stdErr)) {
stdErr <- "None"
}
if (model@isPopulation && method == "IT2S-EM") {
stdErr <- "None"
}
if (stdErr == "Sandwich") {
ep@sand <- " -sand "
} else if (stdErr == "Fisher-Score") {
ep@fisher <- " -fscore "
} else if (stdErr == "Auto-Detect") {
ep@autodetect <- " -AutoSE "
} else if (stdErr == "Hessian") {
ep@sand <- ""
ep@fisher <- ""
ep@autodetect <- ""
} else if (stdErr == "None") {
ep@xstderr <- 0
} else {
stop(
"argument `stderr` must be one of 'Hessian', 'Sandwich', 'Fisher-Score', 'Auto-Detect', or 'None'"
)
}
# do not add sort for the models with reset
pattern <- "(?<=^|\\n)\\s*reset\\s*\\([^\\n]+\\)"
colDefs <-
paste0(unlist(model@userDefinedExtraDefs), collapse = "\n")
ResetInfoColDef <- grepl(pattern, colDefs, perl = TRUE)
if (!is.null(sort)) {
if (sort) {
if (model@hasResetInfo | ResetInfoColDef) {
stop("model has reset info; set argument `sort` = FALSE")
} else {
ep@sort <- " -sort "
}
} else {
ep@sort <- ""
}
} else {
if (model@hasResetInfo | ResetInfoColDef) {
ep@sort <- ""
} else {
ep@sort <- " -sort "
}
}
if (ep@isPopulation) {
if (stepSizePartialDeriv != 1e-5) {
stop("argument `stepSizePartialDeriv` only applicable to model@isPopulation = FALSE")
}
if (numTimeStepPartialDeriv != 20) {
stop(
"argument `numTimeStepPartialDeriv` only applicable to model@isPopulation = FALSE"
)
}
} else {
ep@parderd <- stepSizePartialDeriv
ep@pardern <- numTimeStepPartialDeriv
}
if (allowSyntheticGradient) {
ep@anagrad <- 1
} else {
ep@anagrad <- 0
}
ep@csv <- " -csv "
return(ep)
}
#---------------------------------------------------------------------------------------------------------------------------------------------
# Helper functions for object assignments in engineParams()
#---------------------------------------------------------------------------------------------------------------------------------------------
.assignEngineMethod <- function(method, model) {
if (is.null(method)) {
if (model@isPopulation == FALSE) {
method <-
"Naive-Pooled" #Only method available for individual models
} else {
method <- "QRPEM"
}
}
methodMap <- list(
"QRPEM" = 1,
"IT2S-EM" = 2,
"FOCE-LB" = 3,
"FO" = 4,
"FOCE-ELS" = 5,
"LAPLACIAN" = 5,
"NAIVE-POOLED" = 6
)
method <- toupper(method)
if (length(methodMap[[method]]) != 1) {
param_methods <- names(methodMap)
stop(
"argument `method` must be one of \"",
paste0(param_methods, collapse = "\", \""),
"\""
)
}
methodMap[[method]]
}
.assignODEMethod <- function(ODE) {
ODEMap <- list(
"LSODE" = 1,
"STIFF" = 2,
"LSODE_ANA_JAC" = 2,
"DVERK" = 3,
"RK" = 3,
"LSODA" = 4,
"AUTODETECT" = 5,
"LSODA_ANA_JAC" = 5,
"MATRIXEXPONENT" = 6,
"MATRIX_EXP" = 6,
"DOPRI5" = 7,
"HIGHAM" = 8
)
ODE <- toupper(ODE)
if (length(ODEMap[[ODE]]) != 1) {
ODE_methods <- names(ODEMap)
stop("argument `ODE` must be one of \"",
paste0(ODE_methods, collapse = "\", \""),
"\"")
}
ODEMap[[ODE]]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.