Nothing
#' Create linear model
#'
#' Use to create a constant, linear, or quadratic PD model
#'
#' @inheritParams pkmodel
#' @param type Model type. Options are \code{"Constant"}, \code{"Linear"}, \code{"Quadratic"}.
#' @inheritDotParams linearmodel_MappingParameters
#'
#' @inheritSection pkmodel_MappingParameters Column mapping
#' @return \code{NlmePmlModel} object
#' @examples
#' model <- linearmodel(type = "Linear", data = pkpdData, ID = "ID", C = "CObs", EObs = "EObs")
#'
#' # View PML Code
#' print(model)
#'
#' @export linearmodel
linearmodel <- function(isPopulation = TRUE,
type = "Constant",
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...
) {
type <- .check_linearType(type)
if (columnMap) {
Columns <- .get_columnsVector(match.call()[[1]])
# initialize mapping values
for (Column in Columns) {
eval(parse(text = paste(Column, "<- NULL")))
}
dotsPrepared <- .transform_EllipsisToVector(...)
# note that current function initialize all model variables
# to mapped columns in current envir
columnNamesToInclude <- .prepare_dotargs(dotsPrepared, Columns)
.check_data5ID(data, isPopulation, ID)
.check_EmaxArgs(EObs, C)
.check_column_mappings(columnNamesToInclude, data)
}
residual <- NlmeResidualEffect(
errorType = ERR_ADDITIVE,
effectName = "E"
)
errorModel <- NlmeErrorModel(c(residual))
model <- NlmePmlModel(
modelType = PARAM_LINEAR,
isPopulation = isPopulation,
linearModelType = type,
# check
errorModel = errorModel,
isTimeBased = FALSE,
modelInfo = NlmePmlModelInfo(modelName, workingDir)
)
model <- createLinearStructuralParameters(model)
model <- generatePMLModel(model)
if (columnMap) {
initColMapping(model) <- data
# Perform column mapping
modelColumnMapping(model) <- c(id = ID, EObs = EObs, C = C)
} else if (!is.null(data)) {
initColMapping(model) <- data
}
return(model)
}
.check_linearType <- function(type) {
if (type == "Constant") {
type <- LinearAlpha
} else if (type == "Linear") {
type <- LinearBeta
} else if (type == "Quadratic") {
type <- LinearGamma
} else {
stop("type argument must be one of 'Constant', 'Linear', 'Quadratic'")
}
type
}
.check_EmaxArgs <- function(EObs, C) {
# Check if missing EObs Column
if (is.null(EObs)) {
warning("`EObs` column not mapped")
}
if (is.null(C)) {
stop("Must specify 'C'")
}
}
#' Linear model mapping parameters
#'
#' Linear model mapping parameters
#'
#' @param ID Column mapping argument for input dataset column(s)
#' that identify individual data profiles. Only applicable to population models
#' \code{isPopulation = TRUE}.
#' @param C Column mapping argument that represents
#' the input dataset column for the independent variable that is treated
#' as a covariate during the estimation/simulation process.
#' @param EObs Column mapping argument that represents
#' the input dataset column for the observed drug effect
#' (i.e., the dependent variable).
#' @keywords internal
linearmodel_MappingParameters <- function(ID = NULL,
C = NULL,
EObs = NULL) NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.