Description Usage Arguments Details Value See Also Examples
report.doc
This function enables to export the table created with report.quali
report.quanti
or report.lsmeans
to a Microsoft Word or a R markdown document.
It's also possible to use report.doc to have a preview of the table in HTML format if the doc
argument is NULL.
For more examples see the website: ClinReport website
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | report.doc(table, ...)
## S3 method for class 'desc'
report.doc(table, title = NULL, colspan.value = NULL,
doc = NULL, init.numbering = F, numbering = T,
font.name = "Times", page.break = T, font.size = 10, valign = F,
...)
## S3 method for class 'anova'
report.doc(table, title = "Anova table",
type.anova = 3, doc = NULL, numbering = T, init.numbering = F,
font.name = "Times", font.size = 10, page.break = T,
pretty.label = FALSE, ...)
## S3 method for class 'anova.lme'
report.doc(table, title = "Anova table",
type.anova = 3, doc = NULL, numbering = T, init.numbering = F,
font.name = "Times", font.size = 10, page.break = T,
pretty.label = FALSE, ...)
|
table |
A desc object that report statistics (the results of |
... |
Other arguments |
title |
Character. The title of the table |
colspan.value |
Character. Add the label of the x1 variable levels (typically "Treatment Groups") |
doc |
NULL or a rdocx object |
init.numbering |
Logical. If TRUE Start numbering of the output at 1, otherwise it increase the output numbering of 1 unit |
numbering |
Logical. If TRUE Output numbers are added before the title. |
font.name |
Character. Passed to |
page.break |
Logical. If TRUE it adds a page break after the output. Default to TRUE |
font.size |
Numeric. Passed to |
valign |
Logical. If TRUE it aligns vertically the levels of the merged cells in the first column |
type.anova |
Passed to |
pretty.label |
Logical. Default to FALSE. If TRUE, use the function |
anova |
Logical. Used to specify if the table is an anova table. By default it's not |
This function creates a flextable object from a desc object.
For Microsoft Word documents:
The argument doc
should be used so the flextable is added to a rdocx object.
Like:
doc=read_docx()
tab=report.quanti(data=data,y="y_numeric",x1="GROUP")
doc=report.doc(tab,doc=doc)
For R markdown documents:
Just don't use the doc
argument. Something like:
“'{r, include=TRUE}
tab=report.quanti(data=data,y="y_numeric",x1="GROUP")
doc=report.doc(tab)
doc
“'
A flextable object (if doc=NULL) or a rdocx object (if doc= an rdocx object).
report.quali
report.quanti
report.lsmeans
desc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | #####################
# Import libraries
#####################
library(officer)
library(flextable)
library(reshape2)
library(emmeans)
library(lme4)
library(nlme)
library(ggplot2)
library(car)
library(xtable)
#####################
# Load data
#####################
data(datafake)
head(datafake)
# Removing baseline data for the model
data.mod=droplevels(datafake[datafake$TIMEPOINT!="D0",])
#####################
# Create your stats tables and graphics
#####################
# Quatitative stats (2 explicative variables) ##################################
# since it's a big enough table, we don't want it to overlap 2 pasges
# so we split it in two with split.desc function
tab1=report.quanti(data=datafake,y="y_numeric",
x1="GROUP",x2="TIMEPOINT",at.row="TIMEPOINT",subjid="SUBJID")
s=split(tab1,variable="TIMEPOINT",at=3)
tab1.1=s$x1
tab1.2=s$x2
gg=plot(tab1,title="Mean response evolution as a function of time by treatment group",
legend.label="Treatment groups",ylab="Y mean")
# Qualitative stats (2 explicative variables) ##################################
tab2=report.quali(data=datafake,y="y_logistic",
x1="GROUP",x2="TIMEPOINT",at.row="TIMEPOINT",total=TRUE,subjid="SUBJID")
gg2=plot(tab2,title="Response distribution (%) by day and treatment group",
legend.label="Y levels")
# Qualitative stats (no explicative variable) ###################################
tab3=report.quali(data=datafake,y="VAR",y.label="Whatever")
# Qualitative stats (no explicative variables ; add number of subjects in header)#
tab4=report.quali(data=datafake,y="VAR",y.label="Whatever",
subjid="SUBJID")
# Qualitative stats (1 explicative variable)#######################################
tab5=report.quali(data=datafake,y="VAR",y.label="Whatever",x1="GROUP",
subjid="SUBJID")
# Quantitative stats (1 explicative variable)#######################################
tab6=report.quanti(data=datafake,y="y_numeric",y.label="Whatever 2",x1="GROUP",
subjid="SUBJID")
# Quali-Quanti table
tab5.6=regroup(tab5,tab6)
# Linear model (order 2 interaction): Anova and LS-Means reporting ################
mod1=lm(y_numeric~baseline+GROUP+TIMEPOINT+GROUP*TIMEPOINT,data=data.mod)
test1=emmeans(mod1,~GROUP|TIMEPOINT)
anov1=Anova(mod1)
tab.mod1=report.lsmeans(lsm=test1)
gg.mod1=plot(tab.mod1,title="LS-Means response evolution as a function of time\n
by treatment group (95% CI)",
legend.label="Treatment groups",ylab="Y mean",add.ci=TRUE)
# Linear model (1 group only): Anova and LS-Means and graph reporting ################
mod2=lm(y_numeric~baseline+GROUP,data=data.mod)
anov2=Anova(mod2,type=3)
test2=emmeans(mod2,~GROUP)
tab.mod2=report.lsmeans(lsm=test2)
gg.mod2=plot(tab.mod2,title="LS-Means response\nby treatment group (95% CI)",
legend.label="Treatment groups",ylab="Y mean",add.ci=TRUE)
# Linear mixed model (order 2 interaction):
# Anova and LS-Means and graph reporting #################
mod3=lme(y_numeric~baseline+GROUP+TIMEPOINT+GROUP*TIMEPOINT,
random=~1|SUBJID,data=data.mod,na.action=na.omit)
anov3=Anova(mod3,3)
test3=emmeans(mod3,~GROUP|TIMEPOINT)
tab.mod3=report.lsmeans(lsm=test3)
gg.mod3=plot(tab.mod3,title="LS-Means response evolution as a function of time\n
by treatment group (95% CI Mixed model)",
legend.label="Treatment groups",ylab="Y mean",add.ci=TRUE)
# Contrast example
contr=contrast(test3, "trt.vs.ctrl", ref = "A")
tab.mod3.contr=report.lsmeans(lsm=contr)
gg.mod3.contr=plot(tab.mod3.contr,title="LS-Means contrast versus reference A\n
(95% CI Mixed model)",
legend.label="Treatment groups",ylab="Y mean",add.ci=TRUE,add.line=FALSE)
############################################################
# Generalized Logistic Linear model (order 2 interaction):
############################################################
# Anova LS-Means and graph reporting ##########
mod4=glm(y_logistic~baseline+GROUP+TIMEPOINT+GROUP*TIMEPOINT,
family=binomial,data=data.mod,na.action=na.omit)
anov4=Anova(mod4,3)
test4=emmeans(mod4,~GROUP|TIMEPOINT)
tab.mod4=report.lsmeans(lsm=test4,at.row="TIMEPOINT")
gg.mod4=plot(tab.mod4,title="LS-Means response evolution as a function of time\n
by treatment group (95% CI Logistic model)",
legend.label="Treatment groups",ylab="Y mean",add.ci=TRUE)
# Generalized Poisson Linear model (order 2 interaction):
# Anova LS-Means and graph reporting #'
mod5=glm(y_poisson~baseline+GROUP+TIMEPOINT+GROUP*TIMEPOINT,
family=poisson,data=data.mod,na.action=na.omit)
anov5=Anova(mod5,3)
test5=emmeans(mod5,~GROUP|TIMEPOINT)
tab.mod5=report.lsmeans(lsm=test5,at.row="TIMEPOINT")
gg.mod5=plot(tab.mod5,title="LS-Means response evolution as a function of time\n
by treatment group (95% CI Poisson model)",
legend.label="Treatment groups",ylab="Y mean",add.ci=TRUE)
#####################
# Create your report
#####################
doc=read_docx()
doc=body_add_toc(doc)
doc=body_add_par(doc,"A beautiful reporting using ClinReport", style = "heading 1")
doc=body_add_par(doc,"Descriptive statistics", style = "heading 2")
doc=report.doc(tab1.1,title="Quantitative statistics (2 explicative variables) (Table 1/2)",
colspan.value="Treatment group",doc=doc,init.numbering=TRUE,
page.break=FALSE)
doc=report.doc(tab1.2,title="Quantitative statistics (2 explicative variables) (Table 2/2)",
colspan.value="Treatment group",doc=doc)
doc=body_add_par(doc,"Corresponding graphic of outputs 1 & 2", style ="Normal")
doc=body_add_gg(doc, value = gg, style = "centered" )
doc=body_add_break(doc)
doc=report.doc(tab2,title="Qualitative statistics (2 explicative variables)",
colspan.value="Treatment group",doc=doc)
doc=report.doc(tab2,title="The same with smaller font size",
colspan.value="Treatment group",doc=doc,font.size=8)
doc=body_add_par(doc,"Corresponding graphic of output 3", style ="Normal")
doc=body_add_gg(doc, value = gg2, style = "centered" )
doc=body_add_break(doc)
doc=body_add_par(doc,"Example of mixing qualitative and quantitative
statistics with the function regroup", style ="Normal")
doc=report.doc(tab5.6,title="Quali-Qanti statistics (1 variable only)",doc=doc)
doc=body_add_par(doc,"Statistical model results", style = "heading 2")
doc=body_add_par(doc,"Model 1", style = "heading 3")
doc=body_add_par(doc,"Anova table example", style = "Normal")
doc=report.doc(anov1,doc=doc)
doc=body_add_par(doc,"LS-Means example", style = "Normal")
doc=report.doc(tab.mod1,title="Linear Model LS-Means results using lm with interactions",
colspan.value="Treatment group",doc=doc)
doc=body_add_gg(doc, value = gg.mod1, style = "centered" )
doc=body_add_break(doc)
doc=body_add_par(doc,"Model 2", style = "heading 3")
doc=report.doc(anov2,doc=doc)
doc=report.doc(tab.mod2,title="Linear Model LS-Means results using lm without interaction",
colspan.value="Treatment group",doc=doc)
doc=body_add_gg(doc, value = gg.mod2, style = "centered" )
doc=body_add_break(doc)
doc=body_add_par(doc,"Model 3", style = "heading 3")
doc=report.doc(anov3,doc=doc)
doc=report.doc(tab.mod3,title="Linear Mixed Model LS-Means results using lme",
colspan.value="Treatment group",doc=doc)
doc=body_add_gg(doc, value = gg.mod3, style = "centered" )
doc=body_add_break(doc)
doc=report.doc(tab.mod3.contr,title="LS-Means Contrast example",
colspan.value="Timepoints",doc=doc)
doc=body_add_gg(doc, value = gg.mod3.contr, style = "centered" )
doc=body_add_break(doc)
doc=body_add_par(doc,"Model 4", style = "heading 3")
doc=report.doc(anov4,doc=doc)
doc=report.doc(tab.mod4,title="Generalized Linear Mixed Model LS-Means results using glm",
colspan.value="Treatment group",doc=doc)
doc=body_add_gg(doc, value = gg.mod4, style = "centered" )
doc=body_add_break(doc)
doc=body_add_par(doc,"Model 5", style = "heading 3")
doc=report.doc(anov5,doc=doc)
doc=report.doc(tab.mod5,title="Poisson Model LS-Means results",
colspan.value="Treatment group",doc=doc)
doc=body_add_gg(doc, value = gg.mod5, style = "centered" )
file=paste(tempfile(),".docx",sep="")
print(doc, target =file)
shell.exec(file)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.