View source: R/Estimate_Param_FBM.R
Estimate_Param_FBM | R Documentation |
This function estimates the parameters of the FBM model.
Estimate_Param_FBM(
tau,
ridge.final,
Iter.EstParmFunc = 80,
especie,
EspecieMaxima,
Tt,
E,
seed = NULL
)
tau |
Number. Value of the tau parameter. |
ridge.final |
Object of class "ridgelm". Values obtained with the ridge regression. |
Iter.EstParmFunc |
Number. Number of iterations. Default: 80 iterations. |
especie |
Matrix that contains at row i the bacterial taxa of bacteria i at all time points. The bacteria placed in the last row of the matrix will be used as reference in the alr transformation and will be at the denominator of the balance. |
EspecieMaxima |
Row in which the bacteria chosen as reference is in |
Tt |
Number of time points available |
E |
Number. Number of bacteria available. |
seed |
Number. Set a seed. Default |
Maximum likelihood estimation is used. This function makes an iterative process, for a given
value of tau, it obtains the value of the rest of the parameters that maximize the dirichlet loglikelihood
(defined in EstParmFunc_FBM) using the Nelder-Mead method and the values obtained in the ridge regression as initial parameters.
Then it uses the values obtained as initial parameters and repeats the process Iter.EstParmFunc
times.
The regression of this model is defined by
\mu_{it}=a_{i1}+a_{i2}\cdot\text{alr}(x_{i,(t-1)})+a_{i3}\cdot\text{Balance}(x_{i,(t-1)})\text{ for }i=1,\dots, D-1\text{ where } D \text{ is the number of bacteria}
Returns a list with:
All.iter: Matrix. Each row has the parameters obtained in each iteration. The parameters are in the columns written in following order: a11,a12,a13, a21, a22,a23, ...a(D-1)1,a(D-1)2,a(D-1)3,tau. Where D is the number of bacterial species present in the matrix especie
. In this matrix we must observe that in the last iterations the values has really similar or equal values, it not, we need to increase the value of Iter.EstParmFunc
.
Param.Estimates: Vector with the estimated parameters, in the following order: a11,a12,a13, a21, a22,a23, ...a(D-1)1,a(D-1)2,a(D-1)3,tau. Where D is the number of bacterial species present in the matrix especie
.
AIC Number: Value of the AIC.
Creus-MartÃ, I., Moya, A., Santonja, F. J. (2021). A Dirichlet autoregressive model for the analysis of microbiota time-series data. Complexity, 2021, 1-16.
set.seed(123)
especie=t(gtools::rdirichlet(5,c(1,3,1)))
Tt=5
E=3
EspecieMaxima=3
ridge.final=ridgeregression(Tt,especie, E, EspecieMaxima)
tau=20
Iter.EstParmFunc=40
Estimate_Param_FBM(tau,ridge.final,Iter.EstParmFunc, especie,EspecieMaxima,Tt,E, 714)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.