View source: R/PredictionEstParmFunc.R
PredictionEstParmFunc | R Documentation |
This function calculates the expected value and variance of the bacteria at time point Tt
. Then, this function calculates the expected value and variance of the bacteria at time point t=(Tt
+1),...,K
PredictionEstParmFunc(
paramEstimadosFinal,
EspecieMaxima,
alpha,
K,
esperanza,
Var,
E,
Tt
)
paramEstimadosFinal |
The estimate parameters. Vector equal to
| ||||||
EspecieMaxima |
Row in which the bacteria chosen as reference is in | ||||||
alpha |
Matrix that contains at the row i the dirichlet parameter of the bacteria i at t=1,2,3,..., | ||||||
K |
Number. The function will calculate the value of the expected value and the variance at | ||||||
esperanza |
Matrix that contains at row i the expected value of the bacterial taxa of bacteria i at t=1,2,3,..., | ||||||
Var |
Matrix that contains at row i the variance of the bacterial taxa of bacteria i at t=1,2,3,..., | ||||||
E |
Number of bacteria available | ||||||
Tt |
Number of time points available |
The regression of this model, in an example with three bacteria, is defined by
r_{1}\cdot log(x_{1}(t)/x_{3}(t))+log(x_{1}(t)/x_{3}(t))\cdot [a_{11}\cdot log(x_{1}(t)/x_{3}(t))(t)+a_{12}\cdot log(x_{2}(t)/x_{3}(t))]
r_{2}\cdot log(x_{2}(t)/x_{3}(t))+log(x_{2}(t)/x_{3}(t))\cdot [a_{21}\cdot log(x_{1}(t)/x_{3}(t))(t)+a_{22}\cdot log(x_{2}(t)/x_{3}(t))]
Returns a list with:
ExpectedValue.All: Matrix. Matrix that contains at row i the expected value of the bacteria i at all time points t=2,...,K. The bacteria are placed at the same order than in especies
.
VarianceValue.All: Matrix. Matrix that contains at row i the variance of the bacteria i at all time points t=2,...,K. The bacteria are placed at the same order than in especies
.
DirichlerParam.All: Matrix. Matrix that contains at row i the dirichlet parameter of the bacteria i at all time points t=2,...,K. The bacteria are placed at the same order than in especies
.
Creus-MartÃ, I. and Moya, A. and Santonja, F. J. (2018). A Statistical Model with a Lotka-Volterra Structure for Microbiota Data. Lucas Jodar, Juan Carlos Cortes and Luis Acedo, Modelling or engineering and human behavior 2018, Instituto Universitario de Matematica Multidisciplinar. ISBN: 978-84-09-07541-6
pam.ini=rbind(c(0.1,0.2,0.3),c(0.4,0.5,0.6))
paramEstimadosFinal=c(5, as.vector(pam.ini))
EspecieMaxima=3
alpha=cbind(c(2,2,3),c(1,1,3))
K=3
esperanza=cbind(c(0.2,0.3,0.5))
Var=cbind(c(0.2,0.3,0.5))
E=3
Tt=2
PredictionEstParmFunc(paramEstimadosFinal,EspecieMaxima, alpha,K,esperanza,Var,E,Tt )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.