View source: R/ExpectedValues_EstParmFunc_FBM.R
ExpectedValues_EstParmFunc_FBM | R Documentation |
This function calculates the value of the dirichlet parameters, the expected value and the variance for the FBM model.
ExpectedValues_EstParmFunc_FBM(
paramEstimadosFinal,
especie,
E,
EspecieMaxima,
Tt
)
paramEstimadosFinal |
The estimate parameters, in the following order: a11,a12,a13, a21, a22,a23, ...a(D-1)1,a(D-1)2,a(D-1)3,tau. Where D is the number of bacterial species present in the matrix |
especie |
Matrix that contains at row i the bacterial taxa of bacteria i at all time points. |
E |
Number of bacteria available. |
EspecieMaxima |
Row in which the bacteria chosen as reference is in |
Tt |
Number of time points available. |
The regression of this model is defined by
\mu_{it}=a_{i1}+a_{i2}\cdot\text{alr}(x_{i,(t-1)})+a_{i3}\cdot\text{Balance}(x_{i,(t-1)})\text{ for }i=1,\dots, D-1\text{ where } D \text{ is the number of bacteria}
Returns a list with:
Dirichlet.Param: Matrix. Matrix that contains at row i the dirichlet parameter of the bacteria i at all time points.
Expected.Value: Matrix. Matrix that contains at row i the expected value of the bacteria i at all time points. The bacterias are placed at the same orden than in especies
.
Variance.Value: Matrix. Matrix that contains at row i the variance of the bacteria i at all time points. The bacterias are placed at the same orden than in especies
.
Creus-MartÃ, I., Moya, A., Santonja, F. J. (2021). A Dirichlet autoregressive model for the analysis of microbiota time-series data. Complexity, 2021, 1-16.
set.seed(123)
especie=t(gtools::rdirichlet(2,c(1,1,3)))
Tt=2
E=3
tau=5
EspecieMaxima=3
Iter.EstParmFunc=5
parms11=c(0.1,0.2,0.3,0.4,0.5,0.6,tau)
ExpectedValues_EstParmFunc_FBM(parms11 , especie,E,EspecieMaxima,Tt)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.