Dirichlet regression | R Documentation |
Dirichlet regression.
diri.reg(y, x, plot = FALSE, xnew = NULL)
diri.reg2(y, x, xnew = NULL)
diri.reg3(y, x, xnew = NULL)
y |
A matrix with the compositional data (dependent variable). Zero values are not allowed. |
x |
The predictor variable(s), they can be either continuous or categorical or both. |
plot |
A boolean variable specifying whether to plot the leverage values of the observations or not. This is taken into account only when xnew = NULL. |
xnew |
If you have new data use it, otherwise leave it NULL. |
A Dirichlet distribution is assumed for the regression. This involves numerical optimization.
The function "diri.reg2()" allows for the covariates to be linked with the precision parameter
\phi
via the exponential link function \phi = e^{x*b}
. The function "diri.reg3()"
links the covariates to the alpha parameters of the Dirichlet distribution, i.e. it uses the
classical parametrization of the distribution. This means, that there is a set of regression
parameters for each component.
A list including:
runtime |
The time required by the regression. |
loglik |
The value of the log-likelihood. |
phi |
The precision parameter. If covariates are linked with it (function "diri.reg2()"), this will be a vector. |
phipar |
The coefficients of the phi parameter if it is linked to the covariates. |
std.phi |
The standard errors of the coefficients of the phi parameter is it linked to the covariates. |
log.phi |
The logarithm of the precision parameter. |
std.logphi |
The standard error of the logarithm of the precision parameter. |
be |
The beta coefficients. |
seb |
The standard error of the beta coefficients. |
sigma |
Th covariance matrix of the regression parameters (for the mean vector and the phi parameter)". |
lev |
The leverage values. |
est |
For the "diri.reg" this contains the fitted or the predicted values (if xnew is not NULL). For the "diri.reg2" if xnew is NULL, this is also NULL. |
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Giorgos Athineou <gioathineou@gmail.com>.
Maier, Marco J. (2014) DirichletReg: Dirichlet Regression for Compositional Data in R. Research Report Series/Department of Statistics and Mathematics, 125. WU Vienna University of Economics and Business, Vienna. http://epub.wu.ac.at/4077/1/Report125.pdf
Gueorguieva, Ralitza, Robert Rosenheck, and Daniel Zelterman (2008). Dirichlet component regression and its applications to psychiatric data. Computational statistics & data analysis 52(12): 5344-5355.
Ng Kai Wang, Guo-Liang Tian and Man-Lai Tang (2011). Dirichlet and related distributions: Theory, methods and applications. John Wiley & Sons.
Aitchison J. (1986). The statistical analysis of compositional data. Chapman & Hall.
js.compreg, kl.compreg, ols.compreg, comp.reg, alfa.reg, diri.nr, dda
x <- as.vector(iris[, 4])
y <- as.matrix(iris[, 1:3])
y <- y / rowSums(y)
mod1 <- diri.reg(y, x)
mod2 <- diri.reg2(y, x)
mod3 <- comp.reg(y, x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.