pgfDgeometric: Function pgfDgeometric

Description Usage Arguments Author(s) References Examples

Description

This function calculates value of the pgf's first derivative of the geometric distribution.

Usage

1
pgfDgeometric(s, params)

Arguments

s

Value of the parameter of the pgf. It should be from interval [-1,1]. In the opposite pgf diverges.

params

Parameter of the geometric distribution, such that params<-theta, where theta is the probability.

Author(s)

S. Nadarajah, B. V. Popovic, M. M. Ristic

References

Johnson N, Kotz S, Kemp A (1992) Univariate Discrete Distributions, John Wiley and Sons, New York

http://www.am.qub.ac.uk/users/g.gribakin/sor/Chap3.pdf

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
params<-.1
pgfDgeometric(.5,params)

## The function is currently defined as

pgfDgeometric <- function(s,params) {
k<-s[abs(s)>1]
if (length(k)>0)
   warning("At least one element of the vector s are out of interval [-1,1]")
if (length(params)>1) 
    stop("The length of params is 1")
    theta<-params[1]
if ((theta>=1)|(theta<=0))
    stop ("Parameter of geometric distribution must belong  to the interval (0,1)")
    theta*(1-theta)/(1-(1-theta)*s)^2
}

Compounding documentation built on May 2, 2019, 1:04 p.m.