pgfDbinomialpoisson: Function pgfDbinomialpoisson

Description Usage Arguments Author(s) References Examples

Description

This function calculates value of the pgf's first derivative of the binomial-Poisson distribution.

Usage

1

Arguments

s

Value of the parameter of the pgf. It should be from interval [-1,1]. In the opposite pgf diverges.

params

List of the parameters of the binomial-Poisson distribution, such that params<-c(theta,p,n), where theta is the positive number, p is the probability, and n is the positive integer.

Author(s)

S. Nadarajah, B. V. Popovic, M. M. Ristic

References

Johnson N, Kotz S, Kemp A (1992) Univariate Discrete Distributions, John Wiley and Sons, New York

http://www.am.qub.ac.uk/users/g.gribakin/sor/Chap3.pdf

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
params<-c(.4,.9,5)
pgfDbinomialpoisson(.5,params)


## The function is currently defined as

pgfDbinomialpoisson <- function(s,params) {
k<-s[abs(s)>1]
if (length(k)>0)
    warning("At least one element of the vector s are out of interval [-1,1]")
if (length(params)<3) 
    stop("At least one value in params is missing")
if (length(params)>3) 
    stop("The length of params is 3")
    theta<-params[1]
    p<-params[2]
    n<-params[3]
if (theta<=0)
    stop ("Parameter theta must be positive")
if ((p>=1)|(p<=0))
    stop ("Parameter p belongs to the interval (0,1)")
if (n<0)
     stop("Parameter n must be positive")
 if(!(abs(n-round(n))<.Machine$double.eps^0.5))
stop("Parameter n must be positive integer")
    n*theta*p*exp(theta*(s-1))*(1-p+p*exp(theta*(s-1)))^(n-1)
}

Compounding documentation built on May 2, 2019, 1:04 p.m.