Nothing
#' @title Multivariate Hedging Portfolio
#' @description This function calculates the multivariate hedging portfolio of Cocca et al. (2024)
#' @param x zoo return matrix (in percentage)
#' @param H Residual variance-covariance, correlation or pairwise connectedness matrix
#' @param method Cumulative sum or cumulative product
#' @param statistics Hedging effectiveness statistic
#' @param metric Risk measure of Sharpe Ratio (StdDev, VaR, or CVaR)
#' @param digit Number of decimal places
#' @return Get hedge ratios
#' @importFrom zoo zoo
#' @importFrom zoo index
#' @importFrom PerformanceAnalytics SharpeRatio
#' @importFrom PerformanceAnalytics Return.annualized
#' @importFrom PerformanceAnalytics StdDev.annualized
#' @examples
#' \donttest{
#' data("g2020")
#' fit = VAR(g2020, configuration=list(nlag=1))
#' mhp = MultivariateHedgingPortfolio(g2020/100, fit$Q)
#' mhp$TABLE
#' }
#' @references
#' Cocca, T., Gabauer, D., & Pomberger, S. (2024). Clean energy market connectedness and investment strategies: New evidence from DCC-GARCH R2 decomposed connectedness measures. Energy Economics.
#'
#' Ederington, L. H. (1979). The hedging performance of the new futures markets. The Journal of Finance, 34(1), 157-170.
#'
#' Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., & de Gracia, F. P. (2020). Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness. Energy Economics, 91, 104762.
#' @author David Gabauer
#' @export
MultivariateHedgingPortfolio = function (x, H, method = c("cumsum", "cumprod"), statistics = c("Fisher", "Bartlett", "Fligner-Killeen", "Levene", "Brown-Forsythe"), metric="StdDev", digit = 2) {
method = match.arg(method)
statistics = match.arg(statistics)
if (!is(x, "zoo")) {
stop("Data needs to be of type 'zoo'")
}
k = ncol(x)
t = nrow(x)
date = as.character(rownames(x))
NAMES = colnames(x)
if (length(dim(H)) == 2) {
H = array(H, c(k, k, 1))
}
if (dim(H)[[3]] == 1) {
H = array(H, c(k, k, t), dimnames = list(NAMES, NAMES, date))
}
BETA = H*0
for (i in 1:t) {
for (j in 1:k) {
COV = H[,,i]
covxy = COV[-j,j]
covxx = COV[-j,-j]
beta = solve(covxx) %*% covxy
BETA[j,-j,i] = beta
}
}
portfolio_return = cumulative_portfolio_return = array(NA, c(t, k), dimnames = list(date))
ret = risk = SR = HE = pvalue = array(NA, c(k, 1), dimnames = list(NAMES))
summary = NULL
for (i in 1:k) {
beta = t(BETA[i,,])
summary_ = cbind(apply(beta,2,mean)[-i],
apply(beta,2,sd)[-i],
apply(beta,2,quantile,0.05)[-i],
apply(beta,2,quantile,0.95)[-i])
rownames(summary_) = paste0(NAMES[i], "/", NAMES[-i])
summary = rbind(summary, summary_)
portfolio_return[,i] = x[,i] - rowSums(x * beta)
HE[i,] = 1 - var(portfolio_return[,i])/var(x[, i])
z = zoo(portfolio_return[,i], order.by=index(x))
SR[i,] = SharpeRatio(z, FUN=(metric), annualize=TRUE)
ret[i,] = Return.annualized(z)
risk[i,] = StdDev.annualized(z)
df = rbind(data.frame(val = x[,i], group = "A"), data.frame(val = portfolio_return[,i], group = "B"))
if (statistics == "Fisher") {
pvalue[i,] = VarianceTest(val ~ as.character(group),
data = df, method = "Fisher")$p.value
} else if (statistics == "Bartlett") {
pvalue[i,] = VarianceTest(val ~ as.character(group),
data = df, method = "Bartlett")$p.value
} else if (statistics == "Fligner-Killeen") {
pvalue[i,] = VarianceTest(val ~ as.character(group),
data = df, method = "Fligner-Killeen")$p.value
} else if (statistics == "Levene") {
pvalue[i,] = VarianceTest(val ~ as.character(group),
data = df, method = "Levene")$p.value
} else if (statistics == "Brown-Forsythe") {
pvalue[i,] = VarianceTest(val ~ as.character(group),
data = df, method = "Brown-Forsythe")$p.value
} else {
stop("No valid hedging effectiveness statistics have been chosen.")
}
if (method == "cumsum") {
cumulative_portfolio_return[,i] = cumsum(portfolio_return[,i])
} else if (method == "cumprod") {
cumulative_portfolio_return[,i] = cumprod(1 + portfolio_return[,i]) - 1
}
}
TABLE = cbind(summary, rep(HE,each=k-1), rep(pvalue,each=k-1), rep(ret,each=k-1), rep(risk,each=k-1), rep(SR,each=k-1))
colnames(TABLE) = c("Mean", "Std.Dev.", "5%", "95%", "HE",
"p-value", "Return", "Risk","SR")
return = list(TABLE = format(round(TABLE, digit), nsmall = digit), Beta=BETA,
portfolio_return = portfolio_return,
cumulative_portfolio_return = cumulative_portfolio_return)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.