R/club.R

Defines functions club

Documented in club

#' Find a club
#'
#' Add units to core group according to step 3 of the clustering algorithm by
#' Phillips and Sul (2007, 2009), in order to find the enlarged club.
#'
#' @param X dataframe containing data (preferably filtered data in order to remove business cycles).
#'  Data must not contain any NA or NaN values, otherwise the clustering procedure will be stopped with an error.#' @param dataCols integer vector with the column indices of the data
#' @param core an integer vector containing the id's of units in core group
#' @param time_trim a numeric value between 0 and 1, representing the portion of
#' time periods to trim when running log t regression model.
#' Phillips and Sul (2007, 2009) suggest to discard the first third of the period.
#' @param HACmethod string indicating whether a Fixed Quadratic Spheric Bandwidth (\code{HACmethod="FQSB"}) or
#' an Adaptive Quadratic Spheric Bandwidth (\code{HACmethod="AQSB"}) should be used for the truncation
#' of the Quadratic Spectral kernel in estimating the \eqn{log t} regression model
#' with heteroskedasticity and autocorrelation consistent standard errors.
#' The default method is "FQSB".
#' @param cstar numeric scalar, indicating the threshold value of the sieve criterion \eqn{c^*}
#' to include units in the detected core (primary) group (step 3 of Phillips and Sul (2007, 2009) clustering algorithm).
#' The default value is 0.
#' @param cstar_method a string specifying whether cstar should be mantained fixed
#' (\code{cstar_method="fixed"}) or increased iteratively until the whole club satisfies
#' the condition \eqn{tvalue>-1.65} (\code{cstar_method="incremental"}).
#' Default is \code{cstar_method="fixed"} (see Details).
#' @param cstar_increment a positive value specifying the increment to cstar,
#' only valid if \code{cstar_method="incremental"} (see Details).
#' @param cstar_cap scalar indicating the maximum value up to which \code{cstar} can
#' be increased
#'
#' @return A list of three objects: \code{id}, a vector containing the row indices
#' of club units in the original dataframe (input of function \code{findClubs});
#' \code{rows}, a vector of row indices of club units in the current dataset
#' (input of function \code{club}); \code{model}, a list containing information
#' about the model used to run the t-test on the units in the club.
#'
#' @references
#' Phillips, P. C.; Sul, D., 2007. Transition modeling and econometric convergence tests. Econometrica 75 (6), 1771-1855.
#'
#' Phillips, P. C.; Sul, D., 2009. Economic transition and growth. Journal of Applied Econometrics 24 (7), 1153-1185.
#'
#'
#'@keywords internal


club <- function(X,
                 dataCols,
                 core,
                 time_trim,
                 HACmethod = c('FQSB', 'AQSB'),
                 cstar = 0,
                 cstar_method = c('fixed', 'incremental'),
                 cstar_increment = 0.1,
                 cstar_cap = 3){

    ### Initialisation ---------------------------------------------------------
    HACmethod <- match.arg(HACmethod)
    cstar_method <- match.arg(cstar_method)
    if(cstar_increment <= 0) cstar_method <- 'fixed'

    X$row <- seq_len(nrow(X))
    unitsNoCore <- X[-core, ] #Data without units of the core group

    ### t-test for core + one unit ---------------------------------------------
    while(TRUE){
        nr <- nrow(unitsNoCore)
        tvalue <- vector(length=nr)
        for (k in seq_len(nr)){
            #compute H
            H <- computeH( X[ c(core, unitsNoCore$row[k]), dataCols ])
            tvalue[k] <- estimateMod(H, time_trim, HACmethod = HACmethod)['tvalue']
        }
        #Find group (core + units) such that (core + i)  gives t > cstar
        ind <- which(tvalue > cstar)
        clubCandidates_id <- unitsNoCore[ind, 'id']
        clubCandidates_row <- unitsNoCore[ind, 'row']


        #If t-value< -1.65, increase c and repeat
        clubId   <- c(X[core, 'id'], clubCandidates_id)
        clubRows <- c(core, clubCandidates_row)

        H <- computeH(X[clubRows, dataCols])
        mod <- estimateMod(H, time_trim, HACmethod = HACmethod)

        if( (mod['tvalue'] > -1.65) | (cstar_method=='fixed') ){
            break
        } else{
            if(cstar<= cstar_cap){
            cstar <- cstar + cstar_increment
            } else{#return only the core
                clubId <- X[core, 'id']
                clubRows <- core
                break
            }
        }
    }

    ### Output -----------------------------------------------------------------
    #return club info
    return( list(id = clubId, #id of units in the club
                 rows = clubRows, #row indices of club units in input
                 model = mod,
                 cstar = cstar) )
}

Try the ConvergenceClubs package in your browser

Any scripts or data that you put into this service are public.

ConvergenceClubs documentation built on June 14, 2022, 1:06 a.m.