Nothing
conv.ann<-function(small.data, train.data, model="2PL",layers=1,learningrate=NULL,treshold=0.01){
p<- colMeans(train.data)
total.score<-rowSums(train.data)
r<-c()
for(i in 1:ncol(train.data)){
r[i]<-cor(train.data[,i],total.score)
}
mod<-mirt(train.data,model=1, temtype = model)
par<-coef(mod,IRTpars=TRUE,simplify=TRUE)
if(model=="2PL"){
a <- par[[1]][,1]
}
else if(model=="Rasch"){
a<-rep(1,length(r))
}
b <- par[[1]][,2]
datapars<-cbind(a,b,r,p)
if(model=="2PL"){
modela<-neuralnet(formula = a ~ p+r ,data = datapars,hidden = layers)
modelb<-neuralnet(formula = b ~ p+r ,data = datapars,hidden=layers)
}
else if(model=="Rasch"){
modelb<-neuralnet(formula = b ~ p+r ,data = datapars,hidden = layers)
}
else{
stop("Please select one of following options as a string : Rasch, 2PL (Default model is 2PL) ")
}
p<-colMeans(small.data)
total.score<-rowSums(small.data)
r<-c()
for(i in 1:ncol(small.data)){
r[i]<-cor(small.data[,i],total.score)
}
params<-cbind(p,r)
if(model=="2PL"){
a_pre<- predict(modela,params)
b_pre<- predict(modelb,params)
predicted_irt_params<-cbind(a_pre,b_pre)
colnames(predicted_irt_params)<-c("a.pre","b.pre")
}
if(model=="Rasch"){
b_pre<- predict(modelb,params)
predicted_irt_params<-as.data.frame(b_pre)
colnames(predicted_irt_params)<-c("b.pre")
}
train.data.parameters<-datapars
output<-list(predicted_irt_params,train.data.parameters)
names(output)<-c("Predicted IRT Parameters","Item Parameters of Training Data")
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.