Description Usage Arguments Value Author(s) References Examples
View source: R/GamePropertyWeakSuperadditivity.R
Checks if a TU game with n players is weakly superadditive. 
Let S be a coalition and i a player not contained in S. 
Then the TU game is weakly superadditive if for any S and 
any i the value of the union of S and i is
greater or equal the sum of the values of S and i. 
Note that weak superadditivity is equivalent to zero-monotonicity.
| 1 | 
| v | Numeric vector of length 2^n - 1 representing the values of the coalitions of a TU game with n players | 
TRUE if the game is weakly superadditive, else FALSE.
Johannes Anwander anwander.johannes@gmail.com
Jochen Staudacher jochen.staudacher@hs-kempten.de
Peleg B. and Sudhoelter P. (2007) Theory of cooperative games, 2nd Edition, Springer, p. 10
| 1 2 3 4 5 6 7 8 9 10 11 12 13 | library(CoopGame)
isWeaklySuperadditiveGame(c(0,0,0,1,1,1,1))
#Example of a weakly superadditive game
library(CoopGame)
v1=c(1:15)
isWeaklySuperadditiveGame(v1)
#Example of a game which is not weakly superadditive
library(CoopGame)
v2=c(1:5,7,7)
isWeaklySuperadditiveGame(v2)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.