Description Usage Arguments Value References Examples
View source: R/CovEst.adaptive.R
Cai and Liu (2011) proposed an adaptive variant of Bickel and Levina (2008) - CovEst.hard
. The idea of adaptive thresholding is
to apply thresholding technique on correlation matrix in that it becomes adaptive in terms of each variable.
1 | CovEst.adaptive(X, thr = 0.5, nCV = 10, parallel = FALSE)
|
X |
an (n\times p) matrix where each row is an observation. |
thr |
user-defined threshold value. If it is a vector of regularization values, it automatically selects one that minimizes cross validation risk. |
nCV |
the number of repetitions for 2-fold random cross validations for each threshold value. |
parallel |
a logical; |
a named list containing:
a (p\times p) covariance matrix estimate.
a dataframe containing vector of tested threshold values(thr
) and corresponding cross validation scores(CVscore
).
cai_adaptive_2011CovTools
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## generate data from multivariate normal with Identity covariance.
pdim <- 5
data <- matrix(rnorm(10*pdim), ncol=pdim)
## apply 4 different schemes
# mthr is a vector of regularization parameters to be tested
mthr <- seq(from=0.01,to=0.99,length.out=10)
out1 <- CovEst.adaptive(data, thr=0.1) # threshold value 0.1
out2 <- CovEst.adaptive(data, thr=0.5) # threshold value 0.5
out3 <- CovEst.adaptive(data, thr=0.1) # threshold value 0.9
out4 <- CovEst.adaptive(data, thr=mthr) # automatic threshold checking
## visualize 4 estimated matrices
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(out1$S[,pdim:1], col=gray((0:100)/100), main="thr=0.1")
image(out2$S[,pdim:1], col=gray((0:100)/100), main="thr=0.5")
image(out3$S[,pdim:1], col=gray((0:100)/100), main="thr=0.9")
image(out4$S[,pdim:1], col=gray((0:100)/100), main="automatic")
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.