Description Usage Arguments Value References Examples
View source: R/BCovTest1.mxPBF.R
It performs Bayesian version of 1-sample test for Covariance where the null hypothesis is
H_0 : Σ_n = Σ_0
where Σ_n is the covariance of data model and Σ_0 is a hypothesized covariance. Denote X_i be the i-th column of data matrix. Under the maximum pairwise Bayes Factor framework, we have following hypothesis,
H_0: a_{ij}=0~\mathrm{ and }~τ_{ij}=1 \quad \mathrm{versus. } \quad H_1: \mathrm{ not }~ H_0.
The model is
X_i | X_j \sim N_n( a_{ij}X_j, τ_{ij}^2 I_n )
and the prior is set, under H_1, as
a_{ij}|τ_{ij}^2 \sim N(0, τ_{ij}^2/(γ*||X_j||^2))
τ_{ij}^2 \sim IG(a0, b0).
1 |
data |
an (n\times p) data matrix where each row is an observation. |
Sigma0 |
a (p\times p) given covariance matrix. |
a0 |
shape parameter for inverse-gamma prior. |
b0 |
scale parameter for inverse-gamma prior. |
gamma |
non-negative number. See the equation above. |
a named list containing:
a (p\times p) matrix of pairwise log Bayes factors.
lee_maximum_2018CovTools
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ## Not run:
## generate data from multivariate normal with trivial covariance.
pdim = 10
data = matrix(rnorm(100*pdim), nrow=100)
## run mxPBF-based test
out1 = BCovTest1.mxPBF(data)
out2 = BCovTest1.mxPBF(data, a0=5.0, b0=5.0) # change some params
## visualize two Bayes Factor matrices
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(exp(out1$log.BF.mat)[,pdim:1], main="default")
image(exp(out2$log.BF.mat)[,pdim:1], main="a0=b0=5.0")
par(opar)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.