Description Usage Arguments Value References Examples
View source: R/PreEst.2014Banerjee.R
PreEst.2014Banerjee
returns a Bayes estimator of the banded precision matrix using G-Wishart prior.
Stein’s loss or squared error loss function is used depending on the “loss” argument in the function.
The bandwidth is set at the mode of marginal posterior for the bandwidth parameter.
1 2 3 4 5 6 7 | PreEst.2014Banerjee(
X,
upperK = floor(ncol(X)/2),
delta = 10,
logpi = function(k) { -k^4 },
loss = c("Stein", "Squared")
)
|
X |
an (n\times p) data matrix where each row is an observation. |
upperK |
upper bound of bandwidth k. |
delta |
hyperparameter for G-Wishart prior. Default value is 10. It has to be larger than 2. |
logpi |
log of prior distribution for bandwidth k. Default is a function proportional to -k^4. |
loss |
type of loss; either |
a named list containing:
a (p\times p) MAP estimate for precision matrix.
banerjee_posterior_2014CovTools
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ## generate data from multivariate normal with Identity precision.
pdim = 10
data = matrix(rnorm(50*pdim), ncol=pdim)
## compare different K
out1 <- PreEst.2014Banerjee(data, upperK=1)
out2 <- PreEst.2014Banerjee(data, upperK=3)
out3 <- PreEst.2014Banerjee(data, upperK=5)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(diag(pdim)[,pdim:1],main="Original Precision")
image(out1$C[,pdim:1], main="banded1::upperK=1")
image(out2$C[,pdim:1], main="banded1::upperK=3")
image(out3$C[,pdim:1], main="banded1::upperK=5")
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.