Description Usage Arguments Value Author(s) References See Also Examples
Performs a K-fold cross-validation for CoxBoost
in search for the optimal number of boosting steps.
1 2 3 4 |
time |
vector of length |
status |
censoring indicator, i.e., vector of length |
x |
|
subset |
a vector specifying a subset of observations to be used in the fitting process. |
maxstepno |
maximum number of boosting steps to evaluate, i.e, the returned “optimal” number of boosting steps will be in the range |
K |
number of folds to be used for cross-validation. If |
type |
way of calculating the partial likelihood contribution of the observation in the hold-out folds: |
parallel |
logical value indicating whether computations in the cross-validation folds should be performed in parallel on a compute cluster, using package |
multicore |
indicates whether computations in the cross-validation folds should be performed in parallel, using package |
upload.x |
logical value indicating whether |
folds |
if not |
trace |
logical value indicating whether progress in estimation should be indicated by printing the number of the cross-validation fold and the index of the covariate updated. |
... |
miscellaneous parameters for the calls to |
List with the following components:
mean.logplik |
vector of length |
se.logplik |
vector with standard error estimates for the mean partial log-likelihood criterion for each boosting step. |
optimal.step |
optimal boosting step number, i.e., with minimum mean partial log-likelihood. |
folds |
list of length |
Harald Binder binderh@uni-mainz.de
Verweij, P. J. M. and van Houwelingen, H. C. (1993). Cross-validation in survival analysis. Statistics in Medicine, 12(24):2305-2314.
CoxBoost
, optimCoxBoostPenalty
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## Not run:
# Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)
# 10-fold cross-validation
cv.res <- cv.CoxBoost(time=obs.time,status=status,x=x,maxstepno=500,
K=10,type="verweij",penalty=100)
# examine mean partial log-likelihood in the course of the boosting steps
plot(cv.res$mean.logplik)
# Fit with optimal number of boosting steps
cbfit <- CoxBoost(time=obs.time,status=status,x=x,stepno=cv.res$optimal.step,
penalty=100)
summary(cbfit)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.