Description Usage Arguments Value Author(s) Examples
Obtains predictions at specified boosting steps from a CoxBoost object fitted by CoxBoost
.
1 2 3 4 |
object |
fitted CoxBoost object from a |
newdata |
|
newtime, newstatus |
vectors with observed time and censoring indicator (0 for censoring, 1 for no censoring, and any other values for competing events in a competing risks setting) for new observations, where prediction is wanted. Only required if predicted partial log-likelihood is wanted, i.e., if |
subset |
an optional vector specifying a subset of observations to be used for evaluation. |
at.step |
scalar or vector of boosting step(s) at which prediction is wanted. If |
times |
vector with |
type |
type of prediction to be returned: |
... |
miscellaneous arguments, none of which is used at the moment. |
For type="lp"
and type="logplik"
a vector of length n.new
(at.step
being a scalar) or a n.new * length(at.step)
matrix (at.step
being a vector) with predictions is returned.
For type="risk"
or type="CIF"
a n.new * T
matrix with predicted probabilities at the specific time points is returned.
Harald Binder binderh@uni-mainz.de
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # Generate some survival data with 10 informative covariates
n <- 200; p <- 100
beta <- c(rep(1,10),rep(0,p-10))
x <- matrix(rnorm(n*p),n,p)
real.time <- -(log(runif(n)))/(10*exp(drop(x %*% beta)))
cens.time <- rexp(n,rate=1/10)
status <- ifelse(real.time <= cens.time,1,0)
obs.time <- ifelse(real.time <= cens.time,real.time,cens.time)
# define training and test set
train.index <- 1:100
test.index <- 101:200
# Fit CoxBoost to the training data
cbfit <- CoxBoost(time=obs.time[train.index],status=status[train.index],
x=x[train.index,],stepno=300,penalty=100)
# mean partial log-likelihood for test set in every boosting step
step.logplik <- predict(cbfit,newdata=x[test.index,],
newtime=obs.time[test.index],
newstatus=status[test.index],
at.step=0:300,type="logplik")
plot(step.logplik)
# names of covariates with non-zero coefficients at boosting step
# with maximal test set partial log-likelihood
print(cbfit$xnames[cbfit$coefficients[which.max(step.logplik),] != 0])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.