Nothing
bsnVaryNvar <-
function (m = 100, nvar = nvmax:50, nvmax = 3, method = "exhaustive",
intercept = TRUE, plotit = TRUE, xlab = "# of variables from which to select",
ylab = "p-values for t-statistics", main = paste("Select 'best'",
nvmax, "variables"), details = FALSE, really.big = TRUE,
smooth = TRUE, ...)
{
if (nvar[1] < nvmax)
stop(paste("Initial value of 'num' must be at least",
nvmax))
leaps.out <- try(requireNamespace("leaps"), silent = TRUE)
if (!is.logical(leaps.out) | (leaps.out == FALSE)) {
print("Error: package leaps is not installed properly")
return()
}
qgam.out <- try(requireNamespace("qgam"), silent = TRUE)
best <- matrix(0, nrow = length(nvar), ncol = nvmax)
if (details) {
bestCoef <- bestSE <- best
}
k <- 0
for (i in nvar) {
k <- k + 1
obj <- bestsetNoise(m = 100, n = i, nvmax = nvmax, intercept = intercept,
print.summary = FALSE, method = method, really.big = really.big)
if (intercept)
bmat <- coef(summary(obj$best))[2:(nvmax + 1), ]
else bmat <- coef(summary(obj$best))[1:nvmax, ]
best[k, ] <- bmat[, 4]
if (details) {
bestCoef[k, ] <- bmat[, 1]
bestSE[k, ] <- bmat[, 2]
}
}
if (plotit) {
v <- as.vector(best)
x <- rep(nvar, nvmax)
clogy <- -log(-log(v))
xlim <- c(0, max(nvar) + 1)
plot(x, clogy, yaxt = "n", xlab = xlab, ylab = ylab,
col = "gray30", xlim = xlim, xaxs = "i", xaxt = "n", ...)
pval <- c(0.001, 0.01, 0.05, 0.25, 0.5, 0.75, 0.95)
g <- -log(-log(pval))
if (smooth)
if (qgam.out) {
mod.ns <- qgam::qgam(clogy ~ s(logx),
data=data.frame(clogy=clogy, logx=log(x)),
qu = 0.5)
hat <- predict(mod.ns)[1:length(nvar)]
lines(nvar, hat, col = "gray40", lwd = 1.5)
}
else {
print("Error: package qgam is not installed properly,")
print("or not installed. Unable to fit smooth curve")
}
axis(1, at = nvar, tck = -0.012, labels = FALSE)
axis(1, at = pretty(nvar), tck = -0.02)
axis(2, at = g, labels = paste(pval), pos = 0, tck = -0.02, las=1)
title(main = main, cex.main = 1.1, line=0.25)
}
if (details)
list(coef = bestCoef, SE = bestSE, pval = best)
else invisible(best)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.