Nothing
"onetPermutation" <-
function (x = DAAG::pair65$heated - DAAG::pair65$ambient, nsim = 2000,
plotit = TRUE)
{
n <- length(x)
dbar <- mean(x)
absx <- abs(x)
z <- array(, nsim)
for (i in 1:nsim) {
mn <- sample(c(-1, 1), n, replace = TRUE)
xbardash <- mean(mn * absx)
z[i] <- xbardash
}
stat.dist <- abs(z)
ngeq <- sum(stat.dist>=abs(dbar))
if (plotit) {
plot(density(z), xlab = "", main = "", yaxs = "i", cex.axis = 0.8,
bty = "L")
abline(v = dbar)
abline(v = -dbar, lty = 2)
mtext(side = 3, line = 0.5, text = expression(bar(d)),
at = dbar)
mtext(side = 3, line = 0.5, text = expression(-bar(d)),
at = -dbar)
}
pval <- ngeq/nsim
## Possible refinement; see ?statmod::permp
pval0 <- statmod::permp(x=ngeq, nperm=nsim, total.nperm=2^n)
print(signif(pval, 3))
invisible()
}
# See ?EnvStats::oneSamplePermutationTest
# Phipson B, Smyth GK (2010). Permutation P-values should never be zero:
# calculating exact P-values when permutations are randomly drawn.
# Statistical Applications in Genetics and Molecular Biology, Volume 9,
# Issue 1, Article 39. doi:10.2202/1544-6115.1585, doi:10.48550/arXiv.1603.05766.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.