Nothing
predict_DDPstar.varfun <-
function(object, object.regfun = NULL, newdata, parallel = c("no", "multicore", "snow"), ncpus = 1, cl = NULL) {
doMCMC <- function(k, object, Xp, regfun) {
ncomp <- ncol(object$fit$probs)
if(ncomp == 1) {
Beta <- matrix(object$fit$beta[k,,], nrow = 1)
} else {
Beta <- object$fit$beta[k,,]
}
aux1 <- sum(object$fit$probs[k,]*object$fit$sd[k,]^2)
aux <- colSums(object$fit$probs[k,]*t((Xp%*%t(Beta))^2))
varfun <- aux + aux1 - regfun[,k]^2
res <- list()
res$varfun <- varfun
res$foo <- 1
res
}
if(is.null(object.regfun)) {
# Obtain regression function
res <- predict_DDPstar.regfun(object = object, newdata = newdata, select = NULL, parallel = parallel, ncpus = ncpus, cl = cl)
Xp <- res$Xp
regfun <- res$regfun
} else {
if(!inherits(object.regfun, "DDPstar.regfun")) {
stop("Class of object 'object.regfun' is not correct")
}
if(is.null(object.regfun$select)) {
Xp <- object.regfun$Xp
regfun <- object.regfun$regfun
} else {
warning("Class of object 'object.regfun' is not correct")
res <- predict_DDPstar.regfun(object = object, newdata = newdata, select = NULL, parallel = parallel, ncpus = ncpus, cl = cl)
Xp <- res$Xp
regfun <- res$regfun
}
}
parallel <- match.arg(parallel)
nsim <- nrow(object$fit$sd)
if(nsim > 0) {
do_mc <- do_snow <- FALSE
if (parallel != "no" && ncpus > 1L) {
if (parallel == "multicore") {
do_mc <- .Platform$OS.type != "windows"
} else if (parallel == "snow") {
do_snow <- TRUE
}
if (!do_mc && !do_snow) {
ncpus <- 1L
}
loadNamespace("parallel") # get this out of the way before recording seed
}
resMCMC <- if (ncpus > 1L && (do_mc || do_snow)) {
if (do_mc) {
parallel::mclapply(seq_len(nsim), doMCMC, object = object, Xp = Xp, regfun = regfun, mc.cores = ncpus)
} else if (do_snow) {
if (is.null(cl)) {
cl <- parallel::makePSOCKcluster(rep("localhost", ncpus))
if(RNGkind()[1L] == "L'Ecuyer-CMRG") {
parallel::clusterSetRNGStream(cl)
}
res <- parallel::parLapply(cl, seq_len(nsim), doMCMC, object = object, Xp = Xp, regfun = regfun)
parallel::stopCluster(cl)
res
} else {
if(!inherits(cl, "cluster")) {
stop("Class of object 'cl' is not correct")
} else {
parallel::parLapply(cl, seq_len(nsim), doMCMC, object = object, Xp = Xp, regfun = regfun)
}
}
}
} else {
lapply(seq_len(nsim), doMCMC, object = object, Xp = Xp, regfun = regfun)
}
resMCMC <- simplify2array(resMCMC)
varfun <- simplify2array(resMCMC["varfun",])
} else {
stop("nsave should be larger than zero.")
}
res <- list()
res$Xp <- Xp
res$varfun <- varfun
class(res) <- "DDPstar.varfun"
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.