Description Usage Arguments Value Author(s) References See Also Examples
Given a compExp
object resulting from an experimental
comparison, this function provides a ranking (by default the top 5) of
the learners involved in the comparison. The rankings are provided by
data set and for each evaluation metric.
1 | rankSystems(compRes, top = 5, maxs = rep(F, dim(compRes@foldResults)[2]))
|
compRes |
An object of class |
top |
The number of learners to include in the rankings (defaulting to 5) |
maxs |
A vector of booleans with as many elements are there are statistics measured in the experimental comparison. A True value means the respective statistic is to be maximized, while a False means minimization. Defaults to all False values. |
The function returns a named list with as many components as there are data sets in the comparison. For each data set you will get another named list, with as many elements as there evaluation statistics. For each of these components you have a data frame with N lines, where N is the size of the requested rank. Each line includes the name of the learner in the respective rank position and the score he got on that particular data set / evaluation metric.
Luis Torgo ltorgo@dcc.fc.up.pt
Torgo, L. (2010) Data Mining using R: learning with case studies, CRC Press (ISBN: 9781439810187).
http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR
experimentalComparison
, bestScores
, statScores
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ## Estimating several evaluation metrics on different variants of a
## regression tree and of a SVM, on two data sets, using one repetition of 10-fold CV
data(swiss)
data(mtcars)
## First the user defined functions
cv.rpartXse <- function(form, train, test, ...) {
require(DMwR)
t <- rpartXse(form, train, ...)
p <- predict(t, test)
mse <- mean((p - resp(form, test))^2)
c(nmse = mse/mean((mean(resp(form, train)) - resp(form, test))^2),
mse = mse)
}
## run the experimental comparison
results <- experimentalComparison(
c(dataset(Infant.Mortality ~ ., swiss),
dataset(mpg ~ ., mtcars)),
c(variants('cv.rpartXse',se=c(0,0.5,1))),
cvSettings(1,10,1234)
)
## get the top 3 best performing systems
rankSystems(results,top=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.