Description Usage Arguments Details Value Author(s) References See Also Examples
This function generates a posterior density sample for a Linear Dependent Tailfree Process model for conditional density estimation.
1 2 3 4 5 6 7 |
y |
a vector giving the response variables. |
x |
a matrix giving the design matrix for the median function. |
xtf |
a matrix giving the design matrix for the conditional probabilities. |
prediction |
a list giving the information used to obtain conditional
inferences. The list includes the following
elements: |
prior |
a list giving the prior information. The list includes the following
parameter: |
mcmc |
a list giving the MCMC parameters. The list must include
the following elements: |
state |
a list giving the current value of the parameters. This list is used if the current analysis is the continuation of a previous analysis. |
status |
a logical variable indicating whether this run is new ( |
ngrid |
integer giving the number of grid points where the conditional density estimate is evaluated. The default is 100. |
grid |
vector of grid points where the conditional densities are evaluated. The default value is NULL and the grid is chosen according to the range of the data. |
compute.band |
logical variable indicating whether the credible band for the conditional density and mean function must be computed. |
type.band |
string indication the type of credible band to be computed; if equal to "HPD" or "PD" then the 95 percent pointwise HPD or PD band is computed, respectively. |
data |
data frame. |
na.action |
a function that indicates what should happen when the data
contain |
work.dir |
working directory. |
This generic function fits a Linear Dependent Tailfree process (Jara and Hanson, 2011), given by:
yi = xi' beta + vi, i=1,…,n
vi | Gxtfi ~ Gxtfi
{Gxtf: xtf in X} | maxm, alpha, sigma2 ~ LDTFP^maxm(h,Pi^{sigma2},\textit{A}^{alpha,rhi})
where, h is the logistic CDF, and Gxtf is median-zero and centered around an N(0,sigma2) distribution. To complete the model specification, independent hyperpriors are assumed,
alpha | a0, b0 ~ Gamma(a0,b0)
sigma^-2 | tau1, tau2 ~ Gamma(tau1/2,tau2/2)
The precision parameter, alpha, of the LDTFP
prior
can be considered as random, having a gamma
distribution, Gamma(a0,b0),
or fixed at some particular value. To let alpha to be fixed at a particular
value, set a0 to NULL in the prior specification.
The computational implementation of the model is based on Slice sampling (Neal, 2003).
An object of class LDTFPdensity
representing the LDTFP model fit.
Generic functions such as print
, plot
,
and summary
have methods to show the results of the fit. The results include
beta
, alpha
and sigma^2
.
The list state
in the output object contains the current value of the parameters
necessary to restart the analysis. If you want to specify different starting values
to run multiple chains set status=TRUE
and create the list state based on
this starting values. In this case the list state
must include the following objects:
alpha |
a double precision giving the value of the precision parameter. |
betace |
a vector giving the value of the median regression coefficient. |
sigma^2 |
a double precision giving the value of the centering variance. |
betatf |
a matrix giving the regression coefficients for each conditional pribability. |
Alejandro Jara <atjara@uc.cl>
Jara, A., Hanson, T. (2011). A class of mixtures of dependent tail-free processes. Biometrika, 98(3): 553 - 566.
Neal, R. (2003) Slice sampling. Anals of Statistics, 31: 705 - 767.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | ## Not run:
########################
# IgG data
########################
data(igg)
z <- igg$age
y <- log(igg$igg)
# Design matrices
ages1 <- z^2
ages2 <- 1/ages1
x <- cbind(rep(1,length(y)),ages1,ages2)
xtf <- cbind(rep(1,length(y)),ages1,ages2)
colnames(x) <- c("(Intercept)","age^2","age^{-2}")
colnames(xtf) <- c("(Intercept)","age^2","age^{-2}")
# Prediction
xdpred <- c(11/12,25/12,38/12,52/12,65/12)
agesp1 <- xdpred^2
agesp2 <- 1/agesp1
xdenpred <- cbind(rep(1,length(xdpred)),agesp1,agesp2)
xtfdenpred <- xdenpred
xmpred <- seq(0.5,6,len=50)
agesp1 <- xmpred^2
agesp2 <- 1/agesp1
xmedpred <- cbind(rep(1,length(xmpred)),agesp1,agesp2)
xtfmedpred <- xmedpred
prediction <- list(xdenpred=xdenpred,
xtfdenpred=xtfdenpred,
xmedpred=xmedpred,
xtfmedpred=xtfmedpred,
quans=c(0.03,0.50,0.97))
# Prior information
Sb <- diag(1000,3)
mub <- rep(0,3)
prior <- list(maxm=4,
a0=1,
b0=1,
mub=mub,
Sb=Sb,
tau1=2.02,
tau2=2.02)
# Initial state
state <- NULL
# MCMC parameters
mcmc <- list(nburn=5000,
nsave=5000,
nskip=4,
ndisplay=200)
# Fitting the model
fit1 <- LDTFPdensity(y=y,
x=x,
xtf=xtf,
prediction=prediction,
prior=prior,
mcmc=mcmc,
state=state,
status=TRUE,
compute.band=TRUE)
fit1
summary(fit1)
plot(fit1)
# Plots predictions
# (conditional densities and quantile functions)
par(mfrow=c(3,2))
for(i in 1:5)
{
plot(fit1$grid,fit1$densm[i,],lwd=2,
type="l",lty=1,col="black",xlab="log IgG",ylab="density",
ylim=c(0,2))
lines(fit1$grid,fit1$densl[i,],lwd=1,lty=2,col="black")
lines(fit1$grid,fit1$densu[i,],lwd=1,lty=2,col="black")
}
plot(z,y,ylab="log IgG",xlab="Age (years)")
lines(xmpred,fit1$qmm[,2],lwd=2)
lines(xmpred,fit1$qml[,2],lwd=1,lty=2)
lines(xmpred,fit1$qmu[,2],lwd=1,lty=2)
lines(xmpred,fit1$qmm[,1],lwd=2)
lines(xmpred,fit1$qml[,1],lwd=1,lty=2)
lines(xmpred,fit1$qmu[,1],lwd=1,lty=2)
lines(xmpred,fit1$qmm[,3],lwd=2)
lines(xmpred,fit1$qml[,3],lwd=1,lty=2)
lines(xmpred,fit1$qmu[,3],lwd=1,lty=2)
#######################################
# A simulated data using "perfect"
# simulation (mixture of two normals
# and normal true models).
#######################################
# Functions needed to simulate data
# and to evaluate true models
findq <- function(true.cdf,target,low,
upp,epsilon=0.0000001)
{
plow <- true.cdf(low)
pupp <- true.cdf(upp)
pcenter <- true.cdf((upp+low)/2)
err <- abs(pcenter-target)
i <- 0
while(err > epsilon)
{
i <- i + 1
if(target< pcenter)
{
upp <- (upp+low)/2
pupp <- pcenter
pcenter <- true.cdf((upp+low)/2)
err <- abs(pcenter-target)
}
if(target>= pcenter)
{
low <- (upp+low)/2
plow <- pcenter
pcenter <- true.cdf((upp+low)/2)
err <- abs(pcenter-target)
}
}
return((upp+low)/2)
}
true.dens1 <- function(x)
{
0.5*dnorm(x,2.5,sqrt(0.005))+
0.5*dnorm(x,2.85,sqrt(0.005))
}
true.dens2 <- function(x)
{
dnorm(x,2.1,sqrt(0.0324))
}
true.cdf1 <- function(x)
{
0.5*pnorm(x,2.50,sqrt(0.005))+
0.5*pnorm(x,2.85,sqrt(0.005))
}
true.cdf2 <- function(x)
{
pnorm(x,2.1,sqrt(0.0324))
}
# Simulation
nsim <- 500
qq <- seq(1,nsim)/(nsim+1)
y1 <- rep(0,nsim)
for(i in 1:nsim)
{
aa <- findq(true.cdf1,qq[i],low=-6,upp=6)
y1[i] <- aa
}
y2 <- rep(0,nsim)
for(i in 1:nsim)
{
aa <- findq(true.cdf2,qq[i],low=-6,upp=6)
y2[i] <- aa
}
trt <- c(rep(0,nsim),rep(1,nsim))
y <- c(y1,y2)
# Design matrices
W1 <- cbind(rep(1,2*nsim),trt)
W2 <- cbind(rep(1,2*nsim),trt)
colnames(W1) <- c("(Intercept)","trt")
colnames(W2) <- c("(Intercept)","trt")
# Design matrix for prediction
intp <- rep(1,2)
trtp <- c(0,1)
zpred <- cbind(intp,trtp)
prediction <- list(xdenpred=zpred,
xtfdenpred=zpred,
xmedpred=zpred,
xtfmedpred=zpred,
quans=c(0.03,0.50,0.97))
# Prior information
prior <- list(maxm=5,
a0=1,
b0=1,
mub=rep(0,2),
Sb=diag(1000,2),
tau1=2.002,
tau2=2.002)
# Initial state
state <- NULL
# MCMC parameters
nburn <- 5000
nsave <- 5000
nskip <- 4
ndisplay <- 200
mcmc <- list(nburn=nburn,
nsave=nsave,
nskip=nskip,
ndisplay=ndisplay)
# Fitting the model
fit1 <- LDTFPdensity(y=y,
x=W1,
xtf=W2,
grid=seq(1.2,3.2,len=200),
prediction=prediction,
prior=prior,
mcmc=mcmc,
state=state,
status=TRUE,
compute.band=TRUE)
# Plotting density estimates and true models
par(cex=1.7,mar=c(4.1, 4.1, 1, 1))
plot(fit1$grid,fit1$densu[1,],type="l",xlab="y",
ylab="f(y|x)",lty=2,lwd=3,main="trt=0")
lines(fit1$grid,fit1$densl[1,],lty=2,lwd=3)
lines(fit1$grid,fit1$densm[1,],lty=1,lwd=3)
tmp1 <- true.dens1(fit1$grid)
lines(fit1$grid,tmp1,lty=1,lwd=3,col="red")
par(cex=1.7,mar=c(4.1, 4.1, 1, 1))
plot(fit1$grid,fit1$densu[2,],type="l",xlab="y",
ylab="f(y|x)",lty=2,lwd=3,main="trt=1")
lines(fit1$grid,fit1$densl[2,],lty=2,lwd=3)
lines(fit1$grid,fit1$densm[2,],lty=1,lwd=3)
tmp1 <- true.dens2(fit1$grid)
lines(fit1$grid,tmp1,lty=1,lwd=3,col="red")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.