Description Usage Arguments Details Value Author(s) References See Also Examples
This function generates a posterior density sample of the Survival curve from a semiparametric AFT regression model for interval-censored data.
1 2 |
object |
|
grid |
a vector of grid points where the survival curve should be evaluated. |
xnew |
an optional matrix containing the value of the covariables with which to predict. If omitted, the baseline survival information is calculated. |
hpd |
a logical variable indicating whether a 95HPD interval is
calculated, |
... |
further arguments to be passed. |
This function computes the survival curve based on the fit of a Mixture of Dirichlet process in a AFT regression model for interval censored data (Hanson and Johnson, 2004).
Given a MCMC sample of size J of the parameters, a sample of the predictive survival curve for X is drawn as follows: for the MCMC scan j of the posterior distribution, with j=1,...,J, we sample from:
S^{(j)}(t|X,data) ~ Beta(a^{(j)}(t),b^{(j)}(t))
where,
a^{(j)}(t)=α^{(j)} G_0^{(j)}( (t \exp(X β^{(j)}) , ∞) ) + ∑_{i=1}^n δ_{V^{(j)}_i} ( (t \exp(X β^{(j)}) , ∞) )
and
b^{(j)}(t)=α^{(j)}+N - a^{(j)}(t)
An object of class predict.DPsurvint representing the survival information
arising from a DPsurvint model fit. The results include the posterior mean (pmean),
the posterior median (pmedian), the posterior standard deviation (psd),
the naive standard error (pstd) and the limits of the HPD or credibility intervals,
plinf and plsup.
Alejandro Jara <atjara@uc.cl>
Doss, H. (1994). Bayesian nonparametric estimation for incomplete data using mixtures of Dirichlet priors. The Annals of Statistics, 22: 1763 - 1786.
Hanson, T., and Johnson, W. (2004) A Bayesian Semiparametric AFT Model for Interval-Censored Data. Journal of Computational and Graphical Statistics, 13: 341-361.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | ## Not run:
####################################
# A simulated Data Set
####################################
ind<-rbinom(100,1,0.5)
vsim<-ind*rnorm(100,1,0.25)+(1-ind)*rnorm(100,3,0.25)
x1<-rep(c(0,1),50)
x2<-rnorm(100,0,1)
etasim<-x1+-1*x2
time<-vsim*exp(-etasim)
y<-matrix(-999,nrow=100,ncol=2)
for(i in 1:100){
for(j in 1:15){
if((j-1)<time[i] & time[i]<=j){
y[i,1]<-j-1
y[i,2]<-j
}
}
if(time[i]>15)y[i,1]<-15
}
# Initial state
state <- NULL
# MCMC parameters
nburn<-5000
nsave<-10000
nskip<-10
ndisplay<-50
mcmc <- list(nburn=nburn,nsave=nsave,nskip=nskip,
ndisplay=ndisplay,tune=0.125)
# Prior information
prior <- list(alpha=10,beta0=rep(0,2),Sbeta0=diag(100000,2),
m0=0,s0=1,tau1=0.01,tau2=0.01)
# Fit the model
fit1 <- DPsurvint(y~x1+x2,prior=prior,mcmc=mcmc,
state=state,status=TRUE)
fit1
# Summary with HPD and Credibility intervals
summary(fit1)
summary(fit1,hpd=FALSE)
# Plot model parameters
plot(fit1)
plot(fit1,nfigr=2,nfigc=2)
# Plot an specific model parameter
plot(fit1,ask=FALSE,nfigr=1,nfigc=2,param="x1")
plot(fit1,ask=FALSE,nfigr=1,nfigc=2,param="mu")
# Predictive information for baseline survival
grid<-seq(0.00001,14,0.5)
pred<-predict(fit1,grid=grid)
# Plot Baseline information with and without Credibility band
plot(pred)
plot(pred,band=TRUE)
# Predictive information with covariates
npred<-10
xnew<-cbind(rep(1,npred),seq(-1.5,1.5,length=npred))
xnew<-rbind(xnew,cbind(rep(0,npred),seq(-1.5,1.5,length=npred)))
grid<-seq(0.00001,14,0.5)
pred<-predict(fit1,xnew=xnew,grid=grid)
# Plot Baseline information
plot(pred,band=TRUE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.