Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval = FALSE-------------------------------------------------------------
# library("DR.SC")
## ----eval = FALSE,message=FALSE, warning=FALSE--------------------------------
# data("dlpfc151510", package = 'DR.SC')
#
## ----eval = FALSE,message=FALSE, warning=FALSE--------------------------------
# library(Seurat)
# count <- dlpfc151510@assays$RNA@counts
# meta_data <- data.frame(row=dlpfc151510@meta.data$row, col=dlpfc151510@meta.data$col, annotation=dlpfc151510$annotation)
# row.names(meta_data) <- colnames(count)
# ## create Seurat object
# dlpfc151510 <- CreateSeuratObject(counts=count, meta.data = meta_data)
# head(dlpfc151510)
## ----eval = FALSE-------------------------------------------------------------
#
# # standard log-normalization
# dlpfc151510 <- NormalizeData(dlpfc151510, verbose = F)
# # choose 500 highly variable features
# seu <- FindVariableFeatures(dlpfc151510, nfeatures = 500, verbose = F)
# seu@assays$RNA@var.features[1:10]
## ----eval = FALSE-------------------------------------------------------------
# ### Given K
# seu <- DR.SC(seu, K=7, platform = 'Visium', verbose=T, approxPCA=T)
## ----eval = FALSE-------------------------------------------------------------
# spatialPlotClusters(seu)
## ----eval = FALSE-------------------------------------------------------------
# drscPlot(seu)
## ----eval = FALSE-------------------------------------------------------------
# drscPlot(seu, visu.method = 'UMAP')
## ----eval = FALSE-------------------------------------------------------------
# # choose 480 spatially variable features
# seus <- FindSVGs(seu, nfeatures = 480)
# seus@assays$RNA@var.features[1:10]
## ----eval = FALSE-------------------------------------------------------------
# ### Given K
# seus <- DR.SC(seus, K=7, platform = 'Visium', verbose=F, approxPCA=T)
## ----eval = FALSE-------------------------------------------------------------
# spatialPlotClusters(seus)
# mclust::adjustedRandIndex(seus$spatial.drsc.cluster, seus$annotation)
## ----eval = FALSE-------------------------------------------------------------
# drscPlot(seus)
## ----eval = FALSE-------------------------------------------------------------
# drscPlot(seus, visu.method = 'UMAP')
## ----eval = FALSE-------------------------------------------------------------
# SVGs <- topSVGs(seus, ntop = 400)
# dat <- FindAllMarkers(seus, features = SVGs)
# head(dat)
# library(dplyr, verbose=F)
# top2 <- dat %>%
# group_by(cluster) %>%
# top_n(n = 2, wt = avg_log2FC)
# top2
## ----eval = FALSE, fig.height=6, fig.width=10---------------------------------
# genes <- top2$gene[seq(1, 12, by=2)]
# RidgePlot(seus, features = genes, ncol = 2)
## ----eval = FALSE, fig.height=8, fig.width=10---------------------------------
#
# VlnPlot(seus, features = genes, ncol=2)
## ----eval = FALSE, fig.height=8, fig.width=10---------------------------------
# seus <- RunTSNE(seus, reduction="dr-sc", reduction.key='drsc_tSNE_')
# FeaturePlot(seus, features = genes, reduction = 'tsne' ,ncol=2)
#
## ----eval = FALSE-------------------------------------------------------------
# DotPlot(seus, features = genes)
## ----eval = FALSE, fig.height=8, fig.width=10---------------------------------
# top20 <- dat %>%
# group_by(cluster) %>%
# top_n(n = 20, wt = avg_log2FC)
# genes <- top20$gene
# # standard scaling (no regression)
# seus <- ScaleData(seus)
# DoHeatmap(subset(seus, downsample = 500), features = genes, size = 5)
## ----eval = FALSE-------------------------------------------------------------
# # choose spatially variable features
# seus <- FindSVGs(seu, nfeatures = 480, verbose = F)
## ----eval = FALSE-------------------------------------------------------------
# ### Given K
# seus <- DR.SC(seus, K=3:9, platform = 'Visium', verbose=F)
## ----eval = FALSE-------------------------------------------------------------
# seus <- selectModel(seus, pen.const = 0.8)
# mbicPlot(seus)
## ----eval = FALSE-------------------------------------------------------------
# spatialPlotClusters(seus)
## ----eval = FALSE-------------------------------------------------------------
# drscPlot(seus, dims=1:10)
## ----eval = FALSE-------------------------------------------------------------
# sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.