Nothing
testFS <- function(n.iter, new.fun, old.fun, new.opts = NULL, old.opts = NULL) {
if(requireNamespace("HDLSSkST", quietly = TRUE) & requireNamespace("rmvnorm", quietly = TRUE)) {
for(i in 1:n.iter) {
set.seed(i)
X1 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X2 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X3 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X4 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X5 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X6 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
set.seed(i)
res.old.perm <- do.call(old.fun, c(list(M = rbind(X1, X2, X3, X4, X5, X6),
labels = rep(1:6, each = 100),
sizes = rep(100, 6),
n_sts = 20), old.opts))
res.new.perm <- do.call(new.fun, c(list(X1, X2, as.data.frame(X3), X4, X5, X6,
n.perm = 20, seed = i), new.opts))
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.new.perm, 12)
testthat::expect_named(res.new.perm, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"est.cluster.label", "observed.cont.table",
"crit.value", "random.gamma",
"decision", "est.cluster.no"))
# check p values in [0,1]
testthat::expect_lte(res.new.perm$p.value, 1)
testthat::expect_gte(res.new.perm$p.value, 0)
# statistic is not NA
testthat::expect_false(is.na(res.new.perm$statistic))
# output should be numeric
testthat::expect_s3_class(res.new.perm, "htest")
})
testthat::test_that("output values", {
# check test statistic values
testthat::expect_equal(res.new.perm$statistic, res.old.perm$ObservedProb,
check.attributes = FALSE)
# check test p values
testthat::expect_equal(res.new.perm$p.value, res.old.perm$estPvalue,
check.attributes = FALSE)
})
res.new.perm.1 <- do.call(new.fun, c(list(X1[, 1, drop = FALSE],
X2[, 1, drop = FALSE],
as.data.frame(X3)[, 1, drop = FALSE],
X4[, 1, drop = FALSE],
X5[, 1, drop = FALSE],
X6[, 1, drop = FALSE],
n.perm = 20, seed = i), new.opts))
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.new.perm.1, 12)
testthat::expect_named(res.new.perm.1, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"est.cluster.label", "observed.cont.table",
"crit.value", "random.gamma",
"decision", "est.cluster.no"))
# check p values in [0,1]
testthat::expect_lte(res.new.perm.1$p.value, 1)
testthat::expect_gte(res.new.perm.1$p.value, 0)
# statistic is not NA
testthat::expect_false(is.na(res.new.perm.1$statistic))
# output should be numeric
testthat::expect_s3_class(res.new.perm.1, "htest")
})
}
}
}
testAFS <- function(n.iter, new.fun, old.fun, new.opts = NULL, old.opts = NULL) {
if(requireNamespace("HDLSSkST", quietly = TRUE) & requireNamespace("rmvnorm", quietly = TRUE)) {
for(i in 1:n.iter) {
set.seed(i)
X1 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X2 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X3 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X4 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X5 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X6 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
set.seed(i)
res.old.perm <- do.call(old.fun, c(list(M = rbind(X1, X2, X3, X4, X5, X6),
sizes = rep(100, 6),
n_sts = 20), old.opts))
res.new.perm <- do.call(new.fun, c(list(X1, X2, as.data.frame(X3), X4, X5, X6,
n.perm = 20, seed = i), new.opts))
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.new.perm, 10)
testthat::expect_named(res.new.perm, c('statistic', 'p.value', 'estimate',
'alternative', 'method', 'data.name',
'crit.value', 'random.gamma',
'decision', 'est.cluster.no'))
# statistic is not NA
testthat::expect_false(is.na(res.new.perm$statistic))
# output should be numeric
testthat::expect_s3_class(res.new.perm, "htest")
})
testthat::test_that("output values", {
# check test statistic values
testthat::expect_equal(res.new.perm$statistic, res.old.perm$AFSStat,
check.attributes = FALSE)
# check test p values
testthat::expect_equal(res.new.perm$est.cluster.no, res.old.perm$multipleTest,
check.attributes = FALSE)
})
# not working for p = 1
}
}
}
testMSFS <- function(n.iter, new.fun, old.fun, new.opts = NULL, old.opts = NULL) {
if(requireNamespace("HDLSSkST", quietly = TRUE) & requireNamespace("rmvnorm", quietly = TRUE)) {
for(i in 1:n.iter) {
set.seed(i)
X1 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X2 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X3 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X4 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X5 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X6 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
set.seed(i)
res.old.perm <- do.call(old.fun, c(list(M = rbind(X1, X2, X3, X4, X5, X6),
labels = rep(1:6, each = 100),
sizes = rep(100, 6),
n_sts = 20), old.opts))
res.new.perm <- do.call(new.fun, c(list(X1, X2, as.data.frame(X3), X4, X5, X6,
n.perm = 20, seed = i), new.opts))
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.new.perm, 9)
testthat::expect_named(res.new.perm, c('statistic', 'p.value', 'estimate',
'alternative', 'method', 'data.name',
'observed.cont.table', 'decision',
'decision.per.k'))
# statistic is not NA
testthat::expect_false(any(is.na(res.new.perm$statistic)))
testthat::expect_false(any(is.na(res.new.perm$p.value)))
})
testthat::test_that("output values", {
# check test statistic values
testthat::expect_equal(res.new.perm$statistic, res.old.perm$fpmfvec,
check.attributes = FALSE)
# check test p values
testthat::expect_equal(res.new.perm$p.value, res.old.perm$Pvalues,
check.attributes = FALSE)
})
res.new.perm.1 <- do.call(new.fun, c(list(X1[, 1, drop = FALSE],
X2[, 1, drop = FALSE],
as.data.frame(X3)[, 1, drop = FALSE],
X4[, 1, drop = FALSE],
X5[, 1, drop = FALSE],
X6[, 1, drop = FALSE],
n.perm = 20, seed = i), new.opts))
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.new.perm.1, 9)
testthat::expect_named(res.new.perm.1, c('statistic', 'p.value', 'estimate',
'alternative', 'method', 'data.name',
'observed.cont.table', 'decision',
'decision.per.k'))
# statistic is not NA
testthat::expect_false(any(is.na(res.new.perm.1$statistic)))
testthat::expect_false(any(is.na(res.new.perm.1$p.value)))
})
}
}
}
# original
set.seed(0305)
testFS(1, DataSimilarity::FStest, HDLSSkST::FStest, old.opts = list(n_clust = 6))
# modified
set.seed(0305)
testFS(1, DataSimilarity::FStest, HDLSSkST::FStest, new.opts = list(version = "modified"),
old.opts = list(clust_alg = "estClustNo", n_clust = 6))
# multiscale
set.seed(0305)
testMSFS(1, DataSimilarity::FStest, HDLSSkST::MTFStest, new.opts = list(version = "multiscale"),
old.opts = list(k_max = 12))
# aggregated
set.seed(0305)
testAFS(1, DataSimilarity::FStest, HDLSSkST::AFStest, new.opts = list(version = "aggregated-knw"))
set.seed(0305)
testAFS(1, DataSimilarity::FStest, HDLSSkST::AFStest, new.opts = list(version = "aggregated-est"),
old.opts = list(clust_alg = "estClustNo"))
testRI <- function(n.iter, new.fun, old.fun, new.opts = NULL, old.opts = NULL) {
if(requireNamespace("HDLSSkST", quietly = TRUE) & requireNamespace("rmvnorm", quietly = TRUE)) {
for(i in 1:n.iter) {
set.seed(i)
X1 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2))
X2 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X3 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2))
X4 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X5 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2))
X6 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
set.seed(i)
res.old.perm <- do.call(old.fun, c(list(M = rbind(X1, X2, X3, X4, X5, X6),
labels = rep(1:6, each = 100),
sizes = rep(100, 6),
n_sts = 20), old.opts))
res.new.perm <- do.call(new.fun, c(list(X1, X2, X3, X4, X5, X6, n.perm = 20,
seed = i), new.opts))
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.new.perm, 12)
testthat::expect_named(res.new.perm, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"est.cluster.label", "observed.cont.table",
"crit.value", "random.gamma",
"decision", "est.cluster.no"))
# check p values in [0,1]
testthat::expect_lte(res.new.perm$p.value, 1)
testthat::expect_gte(res.new.perm$p.value, 0)
# statistic is not NA
testthat::expect_false(is.na(res.new.perm$statistic))
# output should be numeric
testthat::expect_s3_class(res.new.perm, "htest")
})
testthat::test_that("output values", {
# check test statistic values
testthat::expect_equal(res.new.perm$statistic, res.old.perm$ObservedRI,
check.attributes = FALSE)
# check test p values
testthat::expect_equal(res.new.perm$p.value, res.old.perm$estPvalue,
check.attributes = FALSE)
})
}
}
}
testARI <- function(n.iter, new.fun, old.fun, new.opts = NULL, old.opts = NULL) {
if(requireNamespace("HDLSSkST", quietly = TRUE) & requireNamespace("rmvnorm", quietly = TRUE)) {
for(i in 1:n.iter) {
set.seed(i)
X1 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2))
X2 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X3 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2))
X4 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
X5 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10), mean = runif(10, -2, 2))
X6 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2), sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
set.seed(i)
res.old.perm <- do.call(old.fun, c(list(M = rbind(X1, X2, X3, X4, X5, X6),
sizes = rep(100, 6),
n_sts = 20), old.opts))
res.new.perm <- do.call(new.fun, c(list(X1, X2, X3, X4, X5, X6, n.perm = 20,
seed = i), new.opts))
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.new.perm, 10)
testthat::expect_named(res.new.perm, c('statistic', 'p.value', 'estimate',
'alternative', 'method', 'data.name',
'crit.value', 'random.gamma',
'decision', 'est.cluster.no'))
# statistic is not NA
testthat::expect_false(is.na(res.new.perm$statistic))
# output should be numeric
testthat::expect_s3_class(res.new.perm, "htest")
})
testthat::test_that("output values", {
# check test statistic values
testthat::expect_equal(res.new.perm$statistic, res.old.perm$ARIStat,
check.attributes = FALSE)
# check test p values
testthat::expect_equal(res.new.perm$est.cluster.no, res.old.perm$multipleTest,
check.attributes = FALSE)
})
}
}
}
# original
set.seed(0305)
testRI(1, DataSimilarity::RItest, HDLSSkST::RItest, old.opts = list(n_clust = 6))
# modified
set.seed(0305)
testRI(1, DataSimilarity::RItest, HDLSSkST::RItest, new.opts = list(version = "modified"),
old.opts = list(clust_alg = "estClustNo", n_clust = 6))
# multiscale
# aggregated
set.seed(0305)
testARI(1, DataSimilarity::RItest, HDLSSkST::ARItest, new.opts = list(version = "aggregated-knw"))
set.seed(0305)
testARI(1, DataSimilarity::RItest, HDLSSkST::ARItest, new.opts = list(version = "aggregated-est"),
old.opts = list(clust_alg = "estClustNo"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.