trav_both: Traverse from one or more selected nodes onto neighboring...

Description Usage Arguments Value Examples

View source: R/trav_both.R

Description

From a graph object of class dgr_graph move from one or more nodes present in a selection to other nodes that are connected by edges, replacing the current nodes in the selection with those nodes traversed to. An optional filter by node attribute can limit the set of nodes traversed to.

Usage

1
2
trav_both(graph, conditions = NULL, copy_attrs_from = NULL,
  copy_attrs_as = NULL, agg = "sum", add_to_selection = FALSE)

Arguments

graph

a graph object of class dgr_graph.

conditions

an option to use filtering conditions for the traversal.

copy_attrs_from

providing a node attribute name will copy those node attribute values to the traversed nodes. Any values extant on the nodes traversed to will be replaced.

copy_attrs_as

if a node attribute name is provided in copy_attrs_from, this option will allow the copied attribute values to be written under a different attribute name. If the attribute name provided in copy_attrs_as does not exist in the graph's ndf, the new node attribute will be created with the chosen name.

agg

if a node attribute is provided to copy_attrs_from, then an aggregation function is required since there may be cases where multiple edge attribute values will be passed onto the traversed node(s). To pass only a single value, the following aggregation functions can be used: sum, min, max, mean, or median.

add_to_selection

an option to either add the traversed to nodes to the active selection of nodes (TRUE) or switch the active selection entirely to those traversed to nodes (FALSE, the default case).

Value

a graph object of class dgr_graph.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Set a seed
set.seed(23)

# Create a simple graph
graph <-
  create_graph() %>%
  add_n_nodes(
    n = 2,
    type = "a",
    label = c("asd", "iekd")) %>%
  add_n_nodes(
    n = 3,
    type = "b",
    label = c("idj", "edl", "ohd")) %>%
  add_edges_w_string(
    edges = "1->2 1->3 2->4 2->5 3->5",
    rel = c(NA, "A", "B", "C", "D"))

# Create a data frame with node ID values
# representing the graph edges (with `from`
# and `to` columns), and, a set of numeric values
df_edges <-
  data.frame(
    from = c(1, 1, 2, 2, 3),
    to = c(2, 3, 4, 5, 5),
    values = round(rnorm(5, 5), 2))

# Create a data frame with node ID values
# representing the graph nodes (with the `id`
# columns), and, a set of numeric values
df_nodes <-
  data.frame(
    id = 1:5,
    values = round(rnorm(5, 7), 2))

# Join the data frame to the graph's internal
# edge data frame (edf)
graph <-
  graph %>%
  join_edge_attrs(df = df_edges) %>%
  join_node_attrs(df = df_nodes)

# Show the graph's internal node data frame
graph %>%
  get_node_df()

# Show the graph's internal edge data frame
graph %>%
  get_edge_df()

# Perform a simple traversal from node `3`
# to adjacent nodes with no conditions on
# the nodes traversed to
graph %>%
  select_nodes_by_id(nodes = 3) %>%
  trav_both() %>%
  get_selection()

# Traverse from node `2` to any adjacent
# nodes, filtering to those nodes that have
# numeric values less than `8.0` for
# the `values` node attribute
graph %>%
  select_nodes_by_id(nodes = 2) %>%
  trav_both(
    conditions = values < 8.0) %>%
  get_selection()

# Traverse from node `5` to any adjacent
# nodes, filtering to those nodes that
# have a `type` attribute of `b`
graph %>%
  select_nodes_by_id(nodes = 5) %>%
  trav_both(
    conditions = type == "b") %>%
  get_selection()

# Traverse from node `2` to any adjacent
# nodes, and use multiple conditions for the
# traversal
graph %>%
  select_nodes_by_id(nodes = 2) %>%
  trav_both(
    conditions =
      type == "a" &
      values > 8.0) %>%
  get_selection()

# Traverse from node `2` to any adjacent
# nodes, and use multiple conditions with
# a single-length vector
graph %>%
  select_nodes_by_id(nodes = 2) %>%
  trav_both(
    conditions =
      type == "a" | values > 8.0) %>%
  get_selection()

# Traverse from node `2` to any adjacent
# nodes, and use a regular expression as
# a filtering condition
graph %>%
  select_nodes_by_id(nodes = 2) %>%
  trav_both(
    conditions = grepl("..d", label)) %>%
  get_selection()

# Create another simple graph to demonstrate
# copying of node attribute values to traversed
# nodes
graph <-
  create_graph() %>%
  add_path(n = 5) %>%
  select_nodes_by_id(nodes = c(2, 4)) %>%
  set_node_attrs_ws(
    node_attr = value,
    value = 5)

# Show the graph's internal node data frame
graph %>%
  get_node_df()

# Show the graph's internal edge data frame
graph %>%
  get_edge_df()

# Perform a traversal from the inner nodes
# (`2` and `4`) to their adjacent nodes (`1`,
# `3`, and `5`) while also applying the node
# attribute `value` to target nodes; node `3`
# will obtain a `value` of 10 since a traversal
# to `3` will occur from `2` and `4` (and
# multiple values passed will be summed)
graph <-
  graph %>%
  trav_both(
    copy_attrs_from = value,
    agg = "sum")

# Show the graph's internal node data frame
# after this change
graph %>%
  get_node_df()

DiagrammeR documentation built on March 18, 2018, 1:25 p.m.