Description Usage Arguments Details Value Author(s) References See Also Examples
GQD.aic()  summarizes the MCMC output from a list of GQD.mle() objects. This may be used to neatly summarize the MCMC output of various models fitted to a given dataset.
| 1 | 
| model.list | A list of  | 
| type | Shoould output be of row ( | 
GQD.aic() summarizes the output from various models fitted via GQD.mle(). By ranking them according to DIC. [=] indicates which model has the minimal DIC.
| Convergence | p | min.likelihood | AIC | BIC | N | |
| Model 1 | 0 | 5 | 171.5576 | [=] 353.1152 | [=] 369.6317 | 201 | 
| Model 2 | 0 | 5 | 185.7518 | 381.5036 | 398.0201 | 201 | 
|  | A data frame with summary of model output. See Details. | 
Etienne A.D. Pienaar: etiannead@gmail.com
Updates available on GitHub at https://github.com/eta21.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | #===============================================================================
# Simulate a time inhomogeneous diffusion.
#-------------------------------------------------------------------------------
  data(SDEsim1)
  attach(SDEsim1)
  par(mfrow=c(1,1))
  expr1=expression(dX[t]==2*(5+3*sin(0.5*pi*t)-X[t])*dt+0.5*sqrt(X[t])*dW[t])
  plot(Xt~time,type='l',col='blue',xlab='Time (t)',ylab=expression(X[t]),main=expr1)
 #------------------------------------------------------------------------------
 # Define coefficients of the process.
 #------------------------------------------------------------------------------
  GQD.remove()
  G0 <- function(t){theta[1]*(theta[2]+theta[3]*sin(0.25*pi*t))}
  G1 <- function(t){-theta[1]}
  Q0 <- function(t){theta[4]*theta[4]}
  theta.start  <- c(1,1,1,1)                      # Starting values for the chain
  mesh.points  <- 10                              # Number of mesh points
  m1 <- GQD.mle(Xt,time,mesh=mesh.points,theta=theta.start)
  GQD.remove()
  G1 <- function(t){theta[1]*(theta[2]+theta[3]*sin(0.25*pi*t))}
  G2 <- function(t){-theta[1]}
  Q2 <- function(t){theta[4]*theta[4]}
  theta.start  <- c(1,1,1,1)                      # Starting values for the chain
  mesh.points  <- 10                              # Number of mesh points
  m2 <- GQD.mle(Xt,time,mesh=mesh.points,theta=theta.start)
  # Check estimates:
  GQD.estimates(m1)
  GQD.estimates(m2)
  # Compare models:
  GQD.aic(list(m1,m2))
#===============================================================================
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.