Nothing
#' The hyper-Poisson distribution (with mu as mean)
#'
#' @author Freddy Hernandez, \email{fhernanb@unal.edu.co}
#'
#' @description
#' These functions define the density, distribution function, quantile
#' function and random generation for the hyper-Poisson in
#' the second parameterization with parameters \eqn{\mu} (as mean) and
#' \eqn{\sigma} as the dispersion parameter.
#'
#' @param x,q vector of (non-negative integer) quantiles.
#' @param p vector of probabilities.
#' @param mu vector of positive values of this parameter.
#' @param sigma vector of positive values of this parameter.
#' @param n number of random values to return
#' @param log,log.p logical; if TRUE, probabilities p are given as log(p).
#' @param lower.tail logical; if TRUE (default), probabilities are \eqn{P[X <= x]}, otherwise, \eqn{P[X > x]}.
#'
#' @references
#' \insertRef{saez2013hyperpo}{DiscreteDists}
#'
#' @importFrom Rdpack reprompt
#'
#' @seealso \link{HYPERPO2}, \link{HYPERPO}.
#'
#' @details
#' The hyper-Poisson distribution with parameters \eqn{\mu} and \eqn{\sigma}
#' has a support 0, 1, 2, ...
#'
#' Note: in this implementation the parameter \eqn{\mu} is the mean
#' of the distribution and \eqn{\sigma} corresponds to
#' the dispersion parameter. If you fit a model with this parameterization,
#' the time will increase because an internal procedure to convert \eqn{\mu}
#' to \eqn{\lambda} parameter.
#'
#' @return
#' \code{dHYPERPO2} gives the density, \code{pHYPERPO2} gives the distribution
#' function, \code{qHYPERPO2} gives the quantile function, \code{rHYPERPO2}
#' generates random deviates.
#'
#' @example examples/examples_dHYPERPO2.R
#'
#' @export
#' @useDynLib DiscreteDists
#' @importFrom Rcpp sourceCpp
dHYPERPO2 <- function(x, mu=1, sigma=1, log=FALSE){
if (any(sigma <= 0)) stop("parameter sigma has to be positive!")
if (any(mu <= 0)) stop("parameter mu has to be positive!")
# To obtain the mu in the older parameterization
mu <- obtaining_lambda(media=mu, gamma=sigma)
dHYPERPO(x=x, mu=mu, sigma=sigma, log=log)
}
#' @export
#' @rdname dHYPERPO2
pHYPERPO2 <- function(q, mu=1, sigma=1, lower.tail = TRUE, log.p = FALSE){
if (any(sigma <= 0)) stop("parameter sigma has to be positive!")
if (any(mu <= 0)) stop("parameter mu has to be positive!")
# To obtain the mu in the older parameterization
mu <- obtaining_lambda(media=mu, gamma=sigma)
ly <- max(length(q), length(mu), length(sigma))
q <- rep(q, length = ly)
mu <- rep(mu, length = ly)
sigma <- rep(sigma, length = ly)
pHYPERPO(q=q, mu=mu, sigma=sigma, lower.tail=lower.tail, log.p=log.p)
}
#' @importFrom stats runif
#' @export
#' @rdname dHYPERPO2
rHYPERPO2 <- function(n, mu=1, sigma=1) {
if (any(sigma <= 0)) stop("parameter sigma has to be positive!")
if (any(mu <= 0)) stop("parameter mu has to be positive!")
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
# To obtain the mu in the older parameterization
mu <- obtaining_lambda(media=mu, gamma=sigma)
if (!is.numeric(n) || length(n) != 1 || n < 0)
stop("invalid arguments")
if (!(is.double(sigma) || is.integer(sigma)) || !(is.double(mu) ||
is.integer(mu)))
stop("Non-numeric argument to mathematical function")
sigma <- rep(sigma, length.out = n)
mu <- rep(mu, length.out = n)
result <- numeric(length = n)
warn <- FALSE
for (ind in seq_len(n)) {
if (sigma[ind] <= 0 || mu[ind] <= 0) {
result[ind] <- NaN
warn <- TRUE
}
else {
result[ind] <- simulate_hp(sigma[ind], mu[ind])
}
}
if (warn)
warning("NaN(s) produced: sigma and mu must be strictly positive")
result
}
#' @export
#' @rdname dHYPERPO2
qHYPERPO2 <- function(p, mu = 1, sigma = 1, lower.tail = TRUE,
log.p = FALSE) {
if (any(sigma <= 0)) stop("parameter sigma has to be positive!")
if (any(mu <= 0)) stop("parameter mu has to be positive!")
if (any(p < 0) | any(p > 1.0001))
stop(paste("p must be between 0 and 1", "\n", ""))
# To obtain the mu in the older parameterization
mu <- obtaining_lambda(media=mu, gamma=sigma)
if (log.p == TRUE)
p <- exp(p)
else p <- p
if (lower.tail == TRUE)
p <- p
else p <- 1 - p
qHYPERPO(p=p, mu=mu, sigma=sigma)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.