Nothing
#' implements three way metric multidimensional scaling:
#' DISTATIS and COVSTATIS.
#'
#' \code{DistatisR}: package implements three way
#' metric multidimensional scaling:
#' DISTATIS and COVSTATIS.
#'
#' Analyzes sets of distance (or covariance)
#' matrices collected on the same set
#' of observations and find common and specific metric spaces.
#'
#' \tabular{ll}{ Package: \tab DistatisR\cr
#' Type: \tab Package\cr Version: \tab
#' 1.1.0\cr Date: \tab 2022-09-28\cr
#' License: \tab GPL-2\cr Depends: \tab
#' prettyGraphs (>= 2.0.0), car}
#' The example shown here comes from Abdi
#' \emph{et al.} (2007), \code{distatis}
#' paper on the sorting task.
#'
#' @name DistatisR-package
#' @aliases DistatisR-package DistatisR DiSTATISR
#' @docType package
#' @author Derek Beaton [aut, com, ctb], & Herve Abdi
#' [aut, cre]
#'
#' Maintainer: Herve Abdi <herve@@utdallas.edu>
#' @seealso % Optional links to other man pages, e.g. % \code{\link{}}
#' \code{\link{distatis}} \code{\link{BootFactorScores}}
#' \code{\link{BootFromCompromise}} \code{\link{DistanceFromSort}}
#' \code{\link{distatis}} \code{\link{GraphDistatisAll}}
#' \code{\link{GraphDistatisBoot}} \code{\link{GraphDistatisCompromise}}
#' \code{\link{GraphDistatisPartial}} \code{\link{GraphDistatisRv}}
#' \code{\link{mmds}}
#' \code{\link{prettyGraphs}}
#' @references % Note: these papers are available from
#' \url{https://personal.utdallas.edu/~herve/}
#'
#' Abdi, H., Valentin, D., O'Toole, A.J., & Edelman, B. (2005).
#' DISTATIS: The
#' analysis of multiple distance matrices.
#' \emph{Proceedings of the IEEE
#' Computer Society: International Conference
#' on Computer Vision and Pattern
#' Recognition.} (San Diego, CA, USA). pp. 42-47.
#'
#' Abdi, H., Valentin, D., Chollet, S., & Chrea, C. (2007).
#' Analyzing
#' assessors and products in sorting tasks:
#' DISTATIS, theory and applications.
#' \emph{Food Quality and Preference}, \bold{18}, 627--640.
#'
#' Abdi, H., & Valentin, D., (2007).
#' Some new and easy ways to describe,
#' compare, and evaluate products and assessors.
#' In D., Valentin, D.Z. Nguyen,
#' L. Pelletier (Eds):
#' \emph{New trends in sensory evaluation of food and
#' non-food products}.
#' Ho Chi Minh (Vietnam): Vietnam National University & Ho
#' Chi Minh City Publishing House. pp. 5--18.
#'
#' Abdi, H., Dunlop, J.P., & Williams, L.J. (2009).
#' How to compute reliability
#' estimates and display confidence and tolerance
#' intervals for pattern
#' classiffers using the Bootstrap
#' and 3-way multidimensional scaling
#' (DISTATIS). \emph{NeuroImage}, \bold{45}, 89--95.
#'
#' Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M.
#' (2012). STATIS
#' and DISTATIS: Optimum multi-table principal component
#' analysis and three way
#' metric multidimensional scaling.
#' \emph{Wiley Interdisciplinary Reviews:
#' Computational Statistics}, \bold{4}, 124--167.
#'
#' Chollet, S., Valentin, D., & Abdi, H. (2014).
#' The free sorting
#' task. In. P.V. Tomasco & G. Ares (Eds),
#' \emph{Novel Techniques in Sensory
#' Characterization and Consumer Profiling.}
#' Boca Raton: Taylor and Francis.
#'
#' Valentin, D., Chollet, S., Nestrud, M., & Abdi, H. (2018).
#' Sorting and similarity methodologies.
#' In. S. Kemp, S., J. Hort, & T.
#' Hollowood (Eds.),
#' \emph{Descriptive Analysis in Sensory Evaluation}.
#' London: Wiley-Blackwell.
#' @keywords package
#' @examples
#'
#' # Here we use the sorting task from Abdi et al.' (2007) paper.
#' # where 10 Assessors sorted 8 beers.
#'
#' #-----------------------------------------------------------------------------
#' # 1. Get the data from the 2007 sorting example
#' # this is the way they look from Table 1 of
#' # Abdi et al. (2007).
#' # Assessors
#' # 1 2 3 4 5 6 7 8 9 10
#' # Beer Sex f m f f m m m m f m
#' # -----------------------------
#' #Affligen 1 4 3 4 1 1 2 2 1 3
#' #Budweiser 4 5 2 5 2 3 1 1 4 3
#' #Buckler_Blonde 3 1 2 3 2 4 3 1 1 2
#' #Killian 4 2 3 3 1 1 1 2 1 4
#' #St. Landelin 1 5 3 5 2 1 1 2 1 3
#' #Buckler_Highland 2 3 1 1 3 5 4 4 3 1
#' #Fruit Defendu 1 4 3 4 1 1 2 2 2 4
#' #EKU28 5 2 4 2 4 2 5 3 4 5
#'
#'
#' # 1.1. Create the
#' # Name of the Beers
#' BeerName <- c('Affligen', 'Budweiser','Buckler Blonde',
#' 'Killian','St.Landelin','Buckler Highland',
#' 'Fruit Defendu','EKU28')
#' # 1.2. Create the name of the Assessors
#' # (F are females, M are males)
#' Juges <- c('F1','M2', 'F3', 'F4', 'M5', 'M6', 'M7', 'M8', 'F9', 'M10')
#'
#' # 1.3. Get the sorting data
#' SortData <- c(1, 4, 3, 4, 1, 1, 2, 2, 1, 3,
#' 4, 5, 2, 5, 2, 3, 1, 1, 4, 3,
#' 3, 1, 2, 3, 2, 4, 3, 1, 1, 2,
#' 4, 2, 3, 3, 1, 1, 1, 2, 1, 4,
#' 1, 5, 3, 5, 2, 1, 1, 2, 1, 3,
#' 2, 3, 1, 1, 3, 5, 4, 4, 3, 1,
#' 1, 4, 3, 4, 1, 1, 2, 2, 2, 4,
#' 5, 2, 4, 2, 4, 2, 5, 3, 4, 5)
#' # 1.4 Create a data frame
#' Sort <- matrix(SortData,ncol = 10, byrow= TRUE, dimnames = list(BeerName, Juges))
#' # (alternatively we could have read a csv file)
#' # 1.5 Example of how to read a csv filw
#' # Sort <- read.table("BeeerSortingTask.csv", header=TRUE,
#' # sep=",", na.strings="NA", dec=".", row.names=1, strip.white=TRUE)
#'
#' #------------------------------------------------------------------
#' # 2. Create the set of distance matrices
#' # (one distance matrix per assessor)
#' # (uses the function DistanceFromSort)
#' DistanceCube <- DistanceFromSort(Sort)
#' #------------------------------------------------------------------
#' # 3. Call the DISTATIS routine with the cube of distance as parameter
#' testDistatis <- distatis(DistanceCube)
#' # The factor scores for the beers are in
#' # testDistatis$res4Splus$F
#' # the factor scores for the assessors are in (RV matrice)
#' # testDistatis$res4Cmat$G
#'
#' #------------------------------------------------------------------
#' # 4. Inferences on the beers obtained via bootstrap
#' # here we use two different bootstraps:
#' # 1. Bootstrap on factors (very fast but could be too liberal
#' # when the number of assessors is very large)
#' # 2. Complete bootstrap obtained by computing sets of compromises
#' # and projecting them (could be significantly longer because a lot
#' # of computations is required)
#' #
#' # 4.1 Get the bootstrap factor scores (with default 1000 iterations)
#' BootF <- BootFactorScores(testDistatis$res4Splus$PartialF)
#' #
#' # 4.2 Get the boostrap from full bootstrap (default niter = 1000)
#' F_fullBoot <- BootFromCompromise(DistanceCube,niter=1000)
#'
#'
#' #------------------------------------------------------------------
#' # 5. Create the Graphics
#' # 5.1 an Rv map
#' rv.graph.out <- GraphDistatisRv(testDistatis$res4Cmat$G)
#' # 5.2 a compromise plot
#' compromise.graph.out <- GraphDistatisCompromise(testDistatis$res4Splus$F)
#' # 5.3 a partial factor score plot
#' partial.scores.graph.out <-
#' GraphDistatisPartial(testDistatis$res4Splus$F,testDistatis$res4Splus$PartialF)
#' # 5.4 a bootstrap confidence interval plot
#' #5.4.1 with ellipses
#' boot.graph.out.ell <- GraphDistatisBoot(testDistatis$res4Splus$F,BootF)
#' #or
#' # boot.graph.out <- GraphDistatisBoot(testDistatis$res4Splus$F,F_fullBoot)
#' #5.4.2 with hulls
#' boot.graph.out.hull <- GraphDistatisBoot(testDistatis$res4Splus$F,BootF,ellipses=FALSE)
#' #or
#' # boot.graph.out <- GraphDistatisBoot(testDistatis$res4Splus$F,F_fullBoot,ellipses=FALSE)
#' #5.5 all the plots at once
#' all.plots.out <-
#' GraphDistatisAll(testDistatis$res4Splus$F,testDistatis$res4Splus$PartialF,
#' BootF,testDistatis$res4Cmat$G)
#'
#'
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.