Nothing
#' Compound Negative Binomial Distribution
#'
#' @description
#' Computes various risk measures (mean, variance, Value-at-Risk (VatR),
#' and Tail Value-at-Risk (TVatR)) for the compound Negative Binomial
#' distribution.
#'
#' @details
#' The compound negative binomial distribution has density ....
#'
#' @param x vector of quantiles
#' @template size-prob-negbinom-template
#' @template distr_severity-template
#' @template k0-template
#' @template shape-template
#' @template rate-template
#' @template scale-template
#' @template vark-template
#'
#' @return
#' Function :
#' \itemize{
#' \item \code{\link{pCompNBinom}} gives the cumulative density function.
#' \item \code{\link{expValCompNBinom}} gives the expected value.
#' \item \code{\link{varCompNBinom}} gives the variance.
#' \item \code{\link{TVatRCompNBinom}} gives the Tail Value-at-Risk.
#' \item \code{\link{VatRCompNBinom}} gives the Value-at-Risk.
#' }
#' Returned values are approximations for the cumulative density function,
#' TVatR, and VatR.
#'
#' @name CompNBinom
NULL
#' @rdname CompNBinom
#'
#' @importFrom stats dbinom pgamma
#' @export
#'
#' @examples
#' pCompNBinom(x = 2, size = 1, prob = 0.2, shape = log(1000) - 0.405,
#' rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
#'
pCompNBinom <- function(x, size, prob, shape, rate = 1 / scale, scale = 1 / rate, k0, distr_severity = "Gamma") {
stopifnot(
prob >= 0, prob <= 1,
size > 0,
rate > 0,
k0 >= 0
)
stopifnot(grepl(pattern = "(^Gamma$)", x = distr_severity, ignore.case = TRUE))
if (grepl(pattern = "^Gamma$", x = distr_severity, ignore.case = TRUE)) {
stopifnot(shape > 0)
stats::dnbinom(x = 0, size = size, prob = prob) + sum(
stats::dnbinom(x = 1:k0, size = size, prob = prob) *
stats::pgamma(q = x, shape = shape * 1:k0, rate = rate)
)
}
}
#' @rdname CompNBinom
#'
#' @export
#'
#' @examples
#'
#' expValCompNBinom(size = 4, prob = 0.2, shape = 0, scale = 1,
#' distr_severity = "Lognormal")
#'
expValCompNBinom <- function(size, prob, shape, rate = 1 / scale, scale = 1 / rate, distr_severity = "Gamma") {
stopifnot(
prob >= 0, prob <= 1,
size > 0,
rate > 0
)
if (grepl(pattern = "^Gamma$", x = distr_severity, ignore.case = TRUE)) {
stopifnot(shape > 0)
expVal.NBCOMP <- expValNBinom(size, prob, nb_tries = FALSE) * kthMomentGamma(k = 1, shape, rate)
} else if (grepl(pattern = "^Lognormal[e]*$", x = distr_severity, ignore.case = TRUE)) {
expVal.NBCOMP <- expValNBinom(size, prob, nb_tries = FALSE) * expValLnorm(shape, sqrt(rate))
}
return(expVal.NBCOMP)
}
#' @rdname CompNBinom
#'
#' @export
#'
#' @examples
#' varCompNBinom(size = 1, prob = 0.2, shape = log(1000) - 0.405, rate = 0.9^2,
#' distr_severity = "Lognormale")
#'
varCompNBinom <- function(size, prob, shape, rate = 1 / scale, scale = 1 / rate, distr_severity = "Gamma") {
stopifnot(
prob >= 0, prob <= 1,
size > 0,
rate > 0
)
if (grepl(pattern = "^Gamma$", x = distr_severity, ignore.case = TRUE)) {
stopifnot(shape > 0)
V.CompNBinom <- expValGamma(shape, rate)^2 * varNBinom(size, prob, nb_tries = FALSE) + varGamma(shape, rate) * expValNBinom(size, prob, nb_tries = FALSE)
} else if (grepl(pattern = "^Lognormal[e]*$", x = distr_severity, ignore.case = TRUE)) {
V.CompNBinom <- expValNBinom(size, prob, nb_tries = FALSE) * (expValLnorm(shape, sqrt(rate)) / prob + varLnorm(shape, sqrt(rate)))
}
return(V.CompNBinom)
}
#' @rdname CompNBinom
#'
#' @template kap-template
#'
#' @export
#'
#' @examples
#' VatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59,
#' rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
#'
VatRCompNBinom <- function(kap, size, prob, shape, rate = 1 / scale, scale = 1 / rate, k0, distr_severity = "Gamma") {
stopifnot(
kap >= 0, kap < 1,
prob >= 0, prob <= 1,
size > 0,
rate > 0,
k0 >= 0
)
stopifnot(grepl(pattern = "(^Gamma$)", x = distr_severity, ignore.case = TRUE))
if (kap <= pCompNBinom(x = 0, size, prob, shape, rate, k0 = k0, distr_severity = distr_severity)) {
VatR.CompNBinom <- 0
} else {
stopifnot(shape > 0)
VatR.CompNBinom <- stats::optimize(function(i) abs(pCompNBinom(x = i, size, prob, shape, rate, k0 = k0, distr_severity = distr_severity) - kap), c(0, k0))$minimum
}
return(VatR.CompNBinom)
}
#' @rdname CompNBinom
#'
#' @importFrom stats dbinom pgamma
#' @export
#'
#' @examples
#' vark_calc <- VatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59,
#' rate = 0.9^2, k0 = 1E2, distr_severity = "Gamma")
#' TVatRCompNBinom(kap = 0.9, size = 1, prob = 0.2, shape = 0.59, rate = 0.9^2,
#' vark = vark_calc, k0 = 1E2, distr_severity = "Gamma")
#'
TVatRCompNBinom <- function(kap, vark, size, prob, shape, rate = 1 / scale, scale = 1 / rate, k0, distr_severity = "Gamma") {
stopifnot(
kap >= 0, kap < 1,
prob >= 0, prob <= 1,
rate > 0,
k0 >= 0,
vark >= 0
)
stopifnot(grepl(pattern = "(^Gamma$)|(^Lognormal[e]*$)", x = distr_severity, ignore.case = TRUE))
if (vark == 0) {
TVatR.CompNBinom <- expValCompNBinom(size, prob, shape, rate, distr_severity = distr_severity) / (1 - kap)
} else if (grepl(pattern = "^Gamma$", x = distr_severity, ignore.case = TRUE)) {
stopifnot(shape > 0)
TVatR.CompNBinom <- sum(
stats::dnbinom(x = 1:k0, size = size, prob = prob) *
expValGamma(shape, rate) * 1:k0 *
stats::pgamma(q = vark, shape = shape * 1:k0 + 1, rate = rate, lower.tail = FALSE)
) / (1 - kap)
}
return(TVatR.CompNBinom)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.