Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(E2E)
## ----include=FALSE------------------------------------------------------------
# Set up a 2-core cluster for parallel processing in this vignette
# This is crucial for passing R CMD check on CI/CD platforms
cl <- parallel::makeCluster(2)
doParallel::registerDoParallel(cl)
## -----------------------------------------------------------------------------
initialize_modeling_system_dia()
## -----------------------------------------------------------------------------
# To run all, use model = "all_dia" or omit the parameter.
results_all_dia <- models_dia(train_dia, model = c("rf", "lasso", "xb"))
# Print a summary for a specific model (e.g., Random Forest)
print_model_summary_dia("rf", results_all_dia$rf)
## -----------------------------------------------------------------------------
# Run a specific subset of models with tuning enabled and custom thresholds
results_dia_custom <- models_dia(
data = train_dia,
model = c("rf", "lasso", "xb"),
tune = TRUE,
seed = 123,
threshold_choices = list(rf = "f1", lasso = 0.6, xb = "youden"),
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Case",
new_negative_label = "Control"
)
# View the custom results
print_model_summary_dia("rf", results_dia_custom$rf)
## -----------------------------------------------------------------------------
# Create a Bagging ensemble with XGBoost as the base model
# n_estimators is reduced for faster execution in this example.
bagging_xb_results <- bagging_dia(train_dia, base_model_name = "xb", n_estimators = 5)
print_model_summary_dia("Bagging (XGBoost)", bagging_xb_results)
## -----------------------------------------------------------------------------
# Create a soft voting ensemble from the top models
voting_soft_results <- voting_dia(
results_all_models = results_all_dia,
data = train_dia,
type = "soft"
)
print_model_summary_dia("Voting (Soft)", voting_soft_results)
## -----------------------------------------------------------------------------
# Create a Stacking ensemble with Lasso as the meta-model
stacking_lasso_results <- stacking_dia(
results_all_models = results_all_dia,
data = train_dia,
meta_model_name = "lasso"
)
print_model_summary_dia("Stacking (Lasso)", stacking_lasso_results)
## -----------------------------------------------------------------------------
# Create an EasyEnsemble with XGBoost as the base model
# n_estimators is reduced for faster execution.
results_imbalance_dia <- imbalance_dia(train_dia, base_model_name = "xb", n_estimators = 5, seed = 123)
print_model_summary_dia("Imbalance (XGBoost)", results_imbalance_dia)
## -----------------------------------------------------------------------------
# Apply the trained Bagging model to the test set
bagging_pred_new <- apply_dia(
trained_model_object = bagging_xb_results$model_object,
new_data = test_dia,
label_col_name = "outcome",
pos_class = "Positive",
neg_class = "Negative"
)
# Evaluate these new predictions
eval_results_new <- evaluate_model_dia(
precomputed_prob = bagging_pred_new$score,
y_data = factor(test_dia$outcome, levels = c(0, 1), labels = c("Positive", "Negative")),
sample_ids = test_dia$sample,
threshold_strategy = "default",
pos_class = "Positive",
neg_class = "Negative"
)
print(eval_results_new$evaluation_metrics)
## ----fig.width=5, fig.height=5, warning=FALSE---------------------------------
# ROC Curve
p1 <- figure_dia(type = "roc", data = results_imbalance_dia)
#plot(p1)
# Precision-Recall Curve
p2 <- figure_dia(type = "prc", data = results_imbalance_dia)
#plot(p2)
# Confusion Matrix
p3 <- figure_dia(type = "matrix", data = results_imbalance_dia)
#plot(p3)
## ----include=FALSE------------------------------------------------------------
# Stop the parallel cluster
parallel::stopCluster(cl)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.