Description Usage Arguments Value Author(s) References Examples
Cox's Regression with broken adaptive ridge (CoxBAR)
1 |
trainx |
The covariates(predictor variables) of training data. |
y |
Survival time and censored status of training data. Must be a Surv |
weight |
In ELMCoxBAR, we set this to a random Cox-Lasso estimate. |
maxiter |
Maximum values of iterations to update the CoxBAR estimator. Default is 5. |
standardize |
Logical flag for trainx variable standardization, prior to fitting the model sequence. Default is standardize=TRUE |
Object of class CoxBAR
with elements
meanx | Mean values of original trainx if standardization is TRUE. |
sdx | Standard deviation values of original trainx if standardization is TRUE. |
standardize | The standardization status. |
beta | The point estimates of β. |
logLik | Log Likelihood. |
Hong Wang
Wang, H, Li, G. Extreme learning machine Cox model for high-dimensional survival analysis. Statistics in Medicine.2019; 38:2139-2156.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | set.seed(123)
require(ELMSurv)
require(survival)
#Lung DATA
data(lung)
lung=na.omit(lung)
lung[,3]=lung[,3]-1
n=dim(lung)[1]
L=sample(1:n,ceiling(n*0.5))
trset<-lung[L,]
teset<-lung[-L,]
rii=c(2,3)
# A randon weight for illustration purpose.
p=dim(lung)[2]-2
myweight=rep(0.5,p)
coxbarmodel=CoxBAR(trainx=trset[,-rii],y=Surv(trset[,rii[1]], trset[,rii[2]]),weight=myweight)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.