CoxBAR: CoxBAR

Description Usage Arguments Value Author(s) References Examples

View source: R/CoxBAR.R

Description

Cox's Regression with broken adaptive ridge (CoxBAR)

Usage

1
CoxBAR(trainx, y, weight = NULL, maxiter = 5, standardize = TRUE)

Arguments

trainx

The covariates(predictor variables) of training data.

y

Survival time and censored status of training data. Must be a Surv survival object

weight

In ELMCoxBAR, we set this to a random Cox-Lasso estimate.

maxiter

Maximum values of iterations to update the CoxBAR estimator. Default is 5.

standardize

Logical flag for trainx variable standardization, prior to fitting the model sequence. Default is standardize=TRUE

Value

Object of class CoxBAR with elements

meanx Mean values of original trainx if standardization is TRUE.
sdx Standard deviation values of original trainx if standardization is TRUE.
standardize The standardization status.
beta The point estimates of β.
logLik Log Likelihood.

Author(s)

Hong Wang

References

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
set.seed(123)
require(ELMSurv)
require(survival)
#Lung DATA
data(lung)
lung=na.omit(lung)
lung[,3]=lung[,3]-1
n=dim(lung)[1]
L=sample(1:n,ceiling(n*0.5))
trset<-lung[L,]
teset<-lung[-L,]
rii=c(2,3)
# A randon weight for illustration purpose.
p=dim(lung)[2]-2
myweight=rep(0.5,p)
coxbarmodel=CoxBAR(trainx=trset[,-rii],y=Surv(trset[,rii[1]], trset[,rii[2]]),weight=myweight)

ELMSurv documentation built on May 27, 2019, 9:04 a.m.

Related to CoxBAR in ELMSurv...