Description Usage Arguments Value Author(s) References See Also Examples
A Survival Ensemble of Extreme Learning Machine Using the Buckley-James estimator
1 2 3 |
x |
The covariates(predictor variables) of training data. |
y |
Survival time and censored status of training data. Must be a Surv |
mtry |
The number of covariates(predictor variables) used in each base ELM model. Default is the square root of the number of all avaibable covariates. |
trlength |
The ensemle size (the number of base ELM survival models). Default is 100. |
Regularization_coefficient |
Ridge or Tikhonov regularization parameter. Default is 10000. Also known as C in the ELM paper. |
Kernel_type |
Type of kernel matrix. Currently four options avaibable. "RBF_kernel",a RBF kernel;"lin_kernel" , a linear kernel;"poly_kernel" ,a polynomial kernel;"sigmoid_kernel", a sigmoid kernel. Default is "lin_kernel". |
Kernel_para |
Parameters for different types of kernels. A single value for RBF and linear kernels. A vector for polynomial and sigmoid kernels and progam stops if only a single value is supplied. However, if the vector of values is supplied in the cases of RBF and liner kernels, only the first value will be used. Default is a vector value "c(2,1)" |
Object of class ELMSurvEN
with elements
elmsurvfit | A list of base models ELMBJ of size trlength . To retrieve a particular base model: use elmsurvfit[[i]], where i takes values between 1 and trlength |
colindexes | Covaraite subspace index. |
trlength | Number of bases models trained. |
Hong Wang
Hong Wang et al (2018). A Survival Ensemble of Extreme Learning Machine. Applied Intelligence, DOI:10.1007/s10489-017-1063-4.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | set.seed(123)
require(ELMSurv)
require(survival)
## Survival Ensemble of ELM with default settings
#Lung DATA
data(lung)
lung=na.omit(lung)
lung[,3]=lung[,3]-1
n=dim(lung)[1]
L=sample(1:n,ceiling(n*0.5))
trset<-lung[L,]
teset<-lung[-L,]
rii=c(2,3)
elmsurvmodel=ELMBJEN(x=trset[,-rii],y=Surv(trset[,rii[1]], trset[,rii[2]]))
# Get the 1th base model
firstbasemodel=elmsurvmodel$elmsurvfit[[1]]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.