Description Usage Arguments Value Author(s) References See Also Examples
A Kernel Extreme Learning Machine Using the Buckley-James estimator
1 2 |
x |
The covariates(predictor variables) of training data. |
y |
Survival time and censored status of training data. Must be a Surv |
Regularization_coefficient |
Ridge or Tikhonov regularization parameter. Default value for |
kerneltype |
Type of kernel matrix. kerneltype=1,a RBF kernel;kerneltype=2 , a linear kernel;kerneltype=3 ,a polynomial kernel;kerneltype=4, a sigmoid kernel. |
Kernel_para |
Parameters for different types of kernels. A single value for kerneltype=1 or 2. A vector for kerneltype=3 or 4. |
List of returned values
trainMSE | Mean Square Error(MSE) on training data. |
newy | Esitmated survival times of training data by the Buckley-James estimator. |
outputWeight | Weights of the output layer in ELM. |
Hong Wang
Hong Wang et al (2018). A Survival Ensemble of Extreme Learning Machine. Applied Intelligence, DOI:10.1007/s10489-017-1063-4.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | set.seed(123)
require(ELMSurv)
require(survival)
#Lung DATA
data(lung)
lung=na.omit(lung)
lung[,3]=lung[,3]-1
n=dim(lung)[1]
L=sample(1:n,ceiling(n*0.5))
trset<-lung[L,]
teset<-lung[-L,]
rii=c(2,3)
#A kernel ELM base model
kerelmsurv=ELMBJ(trset[,-rii],Surv(trset[,rii[1]],trset[,rii[2]]))
#The traing MSE
tr_mse=kerelmsurv$trainMSE
#New survival times imputed for training data
y_impute=kerelmsurv$newy
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.