Description Usage Arguments Value Author(s) References Examples
Extreme Learning Machine Cox Model for High Dimensional Survival Analysis
1 2 |
x |
The covariates(predictor variables) of training data. |
y |
Survival time and censored status of training data. Must be a Surv |
Kernel_type |
Type of kernel matrix. Currently four options avaibable. "RBF_kernel",a RBF kernel;"lin_kernel" , a linear kernel;poly_kernel ,a polynomial kernel;sigmoid_kernel, a sigmoid kernel. Default is "lin_kernel". |
Kernel_para |
Parameters for different types of kernels. A single value for RBF and linear kernels. A vector for polynomial and sigmoid kernels and progam stops if only a single value is supplied. However, if the vector of values is supplied in the cases of RBF and liner kernels, only the first value will be used. Default is a vector value "c(2,1)". |
penality |
Currently, penality is defaulted to 0 to train an ELMCoxBAR model. |
maxiter |
Maximum values of iterations to update the CoxBAR estimator. Default is 5. |
... |
Additional arguments for glmnet. |
Object of class ELMCoxBAR
with elements
elmcox | A glmnet type model. See glmnet for details. |
trainx | Training data covariates. |
kerneltype | Type of kernel matrix used in training. kerneltype=1,a RBF kernel;kerneltype=2 , a linear kernel;kerneltype=3 ,a polynomial kernel;kerneltype=4, a sigmoid kernel. |
Kernel_para | Parameters used in training. A single value for kerneltype=1 or 2. A vector for kerneltype=3 or 4. |
Hong Wang
Wang, H, Li, G. Extreme learning machine Cox model for high-dimensional survival analysis. Statistics in Medicine. 2019; 38:2139-2156.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | set.seed(123)
require(ELMSurv)
require(survival)
#Lung DATA
data(lung)
lung=na.omit(lung)
lung[,3]=lung[,3]-1
n=dim(lung)[1]
L=sample(1:n,ceiling(n*0.5))
trset<-lung[L,]
teset<-lung[-L,]
rii=c(2,3)
# Default with lin_kernel
elmsurvmodel=ELMCoxBAR(x=trset[,-rii],y=Surv(trset[,rii[1]], trset[,rii[2]]))
# with the RBF kernel
elmsurvmodel=ELMCoxBAR(x=trset[,-rii],y=Surv(trset[,rii[1]],
trset[,rii[2]]),Kernel_type="RBF_kernel",Kernel_para=c(2,1))
#The predicted linear predictor
testprelin=predict(elmsurvmodel,teset[,-c(rii)])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.