Likelihood Mixture Tests | R Documentation |
This function test two mixture Gaussian models with unstructured covariance matrix and different numbers of clusters.
lmt(emobj.0, emobj.a, x, tau = 0.5, n.mc.E.delta = 1000, n.mc.E.chi2, verbose = FALSE)
emobj.0 |
a |
emobj.a |
a |
x |
the data matrix, dimension n * p. |
tau |
proportion of null and alternative hypotheses. |
n.mc.E.delta |
number of Monte Carlo simulations for expectation of delta (difference of logL). |
n.mc.E.chi2 |
number of Monte Carlo simulations for expectation of chisquare statistics. |
verbose |
if verbose. |
This function calls several subroutines to compute information,
likelihood ratio statistics, degrees of freedom, non-centrality
of chi-squared distributions ... etc. Based on Monte Carlo methods
to estimate parameters of likelihood mixture tests, this function
return a p-value for testing H0: emobj.0
v.s. Ha: emobj.a
.
A list of class lmt
are returned.
Wei-Chen Chen wccsnow@gmail.com and Ranjan Maitra.
https://www.stat.iastate.edu/people/ranjan-maitra
init.EM
.
## Not run: library(EMCluster, quietly = TRUE) set.seed(1234) x <- as.matrix(iris[, 1:4]) p <- ncol(x) min.n <- p * (p + 1) / 2 .EMC$short.iter <- 200 ret.2 <- init.EM(x, nclass = 2, min.n = min.n, method = "Rnd.EM") ret.3 <- init.EM(x, nclass = 3, min.n = min.n, method = "Rnd.EM") ret.4 <- init.EM(x, nclass = 4, min.n = min.n, method = "Rnd.EM") (lmt.23 <- lmt(ret.2, ret.3, x)) (lmt.34 <- lmt(ret.3, ret.4, x)) (lmt.24 <- lmt(ret.2, ret.4, x)) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.