MVN | R Documentation |
These functions are tools for compute density of (mixture) multivariate Gaussian distribution with unstructured dispersion.
dmvn(x, mu, LTsigma, log = FALSE)
dlmvn(x, mu, LTsigma, log = TRUE)
dmixmvn(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL, log = FALSE)
logL(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL)
x |
the data matrix, dimension |
mu |
the centers of clusters, length |
LTsigma |
the lower triangular matrices of dispersion, length
|
log |
if logarithm returned. |
emobj |
the desired model which is a list mainly contains |
pi |
the mixing proportion, length |
Mu |
the centers of clusters, dimension |
LTSigma |
the lower triangular matrices of dispersion,
|
The dmvn
and dlmvn
compute density and log density of
multivariate distribution.
The dmixmvn
computes density of mixture multivariate distribution
and is based either an input emobj
or inputs pi
,
Mu
, and LTSigma
to assign class id to each observation of
x
.
The logL
returns the value of the observed log likelihood function
of the parameters at the current values of the parameters pi
,
Mu
, and LTSigma
, with the suplied data matrix x
.
A density value is returned.
Wei-Chen Chen wccsnow@gmail.com and Ranjan Maitra.
https://www.stat.iastate.edu/people/ranjan-maitra
init.EM
, emcluster
.
library(EMCluster, quietly = TRUE)
x2 <- da2$da
x3 <- da3$da
emobj2 <- list(pi = da2$pi, Mu = da2$Mu, LTSigma = da2$LTSigma)
emobj3 <- list(pi = da3$pi, Mu = da3$Mu, LTSigma = da3$LTSigma)
logL(x2, emobj = emobj2)
logL(x3, emobj = emobj3)
dmixmvn2 <- dmixmvn(x2, emobj2)
dmixmvn3 <- dmixmvn(x3, emobj3)
dlmvn(da2$da[1,], da2$Mu[1,], da2$LTSigma[1,])
log(dmvn(da2$da[1,], da2$Mu[1,], da2$LTSigma[1,]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.