Nothing
if (interactive()) {
# simulate Gaussian responses
threads <- 1L
n_dims <- c(100L, 11L)
set.seed(040590)
X1 <- as.data.frame(
array(
data = rbinom(n = prod(n_dims), size = 1, prob = runif(n = prod(n_dims), 0, 1)),
dim = n_dims
)
)
Y1 <- rnorm(
n = n_dims[1],
mean = 1 + 0.7 * (X1$V1 * X1$V4) + 0.8896846 * (X1$V8 * X1$V11) + 1.434573 * (X1$V5 * X1$V9),
sd = 1
)
X1$Y1 <- Y1
# specify the initial formula
formula1 <- as.formula(
paste(colnames(X1)[ncol(X1)], "~ 1 +", paste0(colnames(X1)[-c(ncol(X1))], collapse = "+"))
)
data.example <- as.data.frame(X1)
# run the inference with robust g prior
res4G <- suppressMessages(
LogicRegr(
formula = formula1, data = data.example, family = "Gaussian", prior = "G",
report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.01,
p.surv = 0.2, ncores = threads, print.freq = 0L
)
)
# run the inference with Jeffrey's prior
res4J <- suppressMessages(
LogicRegr(
formula = formula1, data = data.example, family = "Gaussian", prior = "J",
report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.01,
p.surv = 0.2, ncores = threads, print.freq = 0L
)
)
# change to Bernoulli responses
X1 <- as.data.frame(
array(data = rbinom(n = prod(n_dims), size = 1, prob = 0.3), dim = n_dims)
)
Y1 <- -0.7 + 1 * ((1 - X1$V1) * (X1$V4)) + 1 * (X1$V8 * X1$V11) + 1 * (X1$V5 * X1$V9)
X1$Y1 <- round(1.0 / (1.0 + exp(-Y1)))
# specify the initial formula
formula1 <- as.formula(
paste(colnames(X1)[ncol(X1)], "~ 1 +", paste0(colnames(X1)[-c(ncol(X1))], collapse = "+"))
)
data.example <- as.data.frame(X1)
# run the inference with robust g prior
res1G <- suppressWarnings(
suppressMessages(
LogicRegr(
formula = formula1, data = data.example, family = "Bernoulli", prior = "G",
report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.2,
p.surv = 0.2, ncores = threads, print.freq = 0L
)
)
)
# run the inference with Jeffrey's prior
res1J <- suppressWarnings(
suppressMessages(
LogicRegr(
formula = formula1, data = data.example, family = "Bernoulli", prior = "J",
report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.2,
p.surv = 0.2, ncores = threads, print.freq = 0L
)
)
)
test_that("outputs are correct", {
expect_equal(ncol(res4G$feat.stat), 2L)
expect_equal(ncol(res4J$feat.stat), 2L)
expect_equal(ncol(res1G$feat.stat), 2L)
expect_equal(ncol(res1J$feat.stat), 2L)
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.