Description Usage Arguments Author(s) References See Also Examples
This function computes the theil-sen estimator and the associated P-value, for each pixel over time in a stack of images. The output consists of two rasters (one for the estimators and one for the P-values). It is recommended to use a "RasterBrick", which is more efficient in memory management. The program can compute the result using serial (default) or parallel evaluation. For parallel evaluation, the program uses PSOCK cluster for windows, and FORK cluster for other operative systems.
1 2 3 4 5 6 7 8 9 | eco.theilsen(
stacked,
dates,
adjust = "none",
run_parallel = FALSE,
workers = NULL,
physical = FALSE,
cl_type = NULL
)
|
stacked |
Stacked images ("RasterLayer" or "RasterBrick"). |
dates |
Data vector with decimal dates for each image. |
adjust |
P-values correction method for multiple tests.
passed to |
run_parallel |
Run code in parallel? Default FALSE |
workers |
Number of workers used for parallel evaulation. If NULL, the program uses N - 1, where N is the total number of available logical cores. |
physical |
Use only physical cores for parallel evaluation? Default FALSE. |
cl_type |
Cluster type. If not specified, "PSOCK" will be used for windows
and "FORK" otherwise. The value is passed as the parameter "type"
to the function |
Leandro Roser learoser@gmail.com
Sen, P. 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, Taylor and Francis Group, 63: 1379-1389.
Theil H. 1950. A rank-invariant method of linear and polynomial regression analysis, Part 3 Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A, 53: 397-1412.
rkt
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | ## Not run:
require("raster")
set.seed(6)
temp <- list()
for(i in 1:100) {
temp[[i]] <- runif(36,-1, 1)
temp[[i]] <- matrix(temp[[i]], 6, 6)
temp[[i]] <- raster(temp[[i]])
}
temp <- brick(temp)
writeRaster(temp,"temporal.tif", overwrite=T)
rm(temp)
ndvisim <- brick("temporal.tif")
date <- seq(from = 1990.1, length.out = 100, by = 0.2)
# Parallel evaluation ----
eco.theilsen(ndvisim, date)
slope <- raster("slope.tif")
pvalue <- raster("pvalue.tif")
par(mfrow = c(1, 2))
plot(slope, main = "slope")
plot(pvalue, main = "p-value")
file.remove(c("slope.tif", "pvalue.tif"))
# Serial evaluation ----
eco.theilsen(ndvisim, date)
slope <- raster("slope.tif")
pvalue <- raster("pvalue.tif")
par(mfrow = c(1, 2))
plot(slope, main = "slope")
plot(pvalue, main = "p-value")
file.remove(c("temporal.tif", "slope.tif", "pvalue.tif"))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.